Курс минералогии

Класс 1. Простые сернистые и им подобные соединения

За исключением сероводорода, все простые сернистые и им подобные соединения в земной коре распространены в виде твердых кристалличе­ских веществ и являются минералами. Среди них по типам химических соединений выделяются различные главные группы минералов (сульфидов, арсенидов и антимонидов).

1. Группа халькозина

В этой группе объединяются минералы меди и серебра типа A2S, A2Se и А2Те. Многие из них существуют в природе в двух модификациях: более высокотемпературной кубической и низкотемпературной ромбиче­ской или моноклинной.

ХАЛЬКОЗИН — Cu2S. Название происходит от греч. халькос — медь. Синоним: медный блеск.

Для Cu2S существует три модификации — одна низкотемпературная, устойчивая ниже 91 °С ромбической сингонии (собственно халькозин или β-халькозин), и две высокотемпературных (выше 91 °С): гексагональная и кубическая (α-халькозин). Гексагональная модификация, имеющая состав, точно отвечающий формуле Cu2S, неустойчива и, распадаясь, переходит в кубическую модификацию — α-халькозин (дигенит), имеющий антифлюоритовую структуру и состав Cu2–хS, где x = 0,03 – 0,11 (а0 = 5,55). Условием устойчивости α-халькозина является статистический пропуск ~10 % положений Сu с заменой других 10 % одновалентной меди на двухвалентную.

Высокотемпературная гексагональная модификация Cu2S имеет структуру с плотнейшей гексагональной упаковкой анионов серы. Ионы меди помещаются в центрах всех треугольников из анионов серы каждого слоя укладки, a0 = 3,89, с0 = 6,68.

Природный халькозин нередко представляет собой смесь низкотемпературного ромбического (β-халькозина) и α-халькозина.

Химический состав. Сu — 79,9 %, S — 20,1 %. Обычно имеются примеси: Ag, иногда Fe, Co, Ni, As, Аu. Некоторые из них, по крайней мере последние, обусловлены механическими примесями.

Сингония ромбическая; ромбо-дипирамидальный в. с. 3L23PC. Пр. гр. Аb2т(2152v). a0 = 11,9; b0 = 27,2; с0 = 13,41. Изредка псевдокубический. В тех случаях, когда халькозин кристаллизуется при температуре ниже 91 °С, обычно наблюдаются следующие грани призм: {110}, {021}, {011}, {023}, пинакоида {001}, ряда дипирамид {111}, {112}, {113} и др. Кристаллическая структура ромбического халькозина очень сложная и в деталях не изучена. Облик кристаллов. Кристаллы наблюдаются сравнительно редко. Большей частью они встречаются в виде толстых таблиц по {001} и коротких столбиков вдоль оси а (рис. 89), но нередко они имеют гексагональный облик (рис. 90). Гексагональный облик кристаллы халькозина часто приобретают вследствие образования тройников с плоскостями срастания по (110). Наблюдаются также двойники прорастания по (032) и реже по (112).

Рис. 89. Призматический кристалл халькозина.
Турьинские рудники (Урал)

Рис. 90. Кристалл халькозина гексагонального облика.
Турьинские рудники (Урал)

Агрегаты. Обычно встречается в виде сплошных тонкозернистых масс или в виде вкраплений в псевдоморфозах по борниту, халькопириту, иногда сфалериту, галениту, ковеллину, пириту и др.

Цвет халькозина свинцово-серый. Черта темно-серая. Блеск металличе­ский.

Твердость 2,5–3. Слабо ковок. Спайность несовершенная по {110}. Уд. вес 5,5–5,8. Хороший проводник электричества.

Диагностические признаки. Характерными являются свинцово-серый цвет, низкая твердость, ковкость (от острия ножа остается блестящий след, что отличает халькозин от весьма похожей на него блеклой руды). Раствор в HNO3 приобретает зеленый цвет. Характерна ассоциация халькозина с медными минералами, чаще всего с борнитом.

П. п. тр. плавится, окрашивая пламя в голубой цвет. На угле с содой получается королек меди. В кислотах растворяется лучше всего в HNO3, выделяя серу.

Происхождение и месторождения. В природе ромбический халькозин образуется как в эндогенных, так и в экзогенных условиях, но исключительно при низких температурах (ниже 91 °С).

Как эндогенный минерал, он изредка встречается в некоторых гидротермальных, богатых медью и бедных серой сульфидных месторождениях. В парагенезисе с халькозином в этих случаях наблюдается чаще других эндогенный борнит. Таковы месторождения Удоканское (Забайкалье), Джезказганское (Казахстан), Редрут в Корнуолле (Англия) и др.

Однако в главной массе халькозин образуется экзогенным путем в так называемых зонах вторичного сульфидного обогащения во всех медно-сульфидных месторождениях (см. рис. 57). Как и другие вторичные сульфиды меди, халькозин возникает при реакциях между первичными сульфидами и растворами сульфатов меди, просачивающимися из зоны окисления медных месторождений. Часто он развивается метасоматическим путем на месте вторичного борнита. Иногда он непо­средственно замещает первичный халькопирит, в ряде случаев — галенит, сфалерит и другие сульфиды первичных руд.

Известны случаи образования халькозина из меденосных растворов в осадочных породах, содержащих органические остатки, в виде псевдоморфоз с сохранением всех деталей строения этих остатков, главным образом древесины.

В зоне кислородного выветривания халькозин неустойчив и, разрушаясь, переходит в куприт (Сu2О), малахит, азурит и другие кислородные соединения. При неполном окислении нередко за счет халькозина образуется самородная медь по реакции:

Cu2S + 2О2 = CuSO4 + Сu.

Крупные месторождения халькозиновых руд сравнительно редки. В значительных количествах они образуются в низах мощных, хорошо проработанных поверхностными агентами зон окисления в богатых медью сульфидных месторождениях. В них халькозин как главный медный минерал слагает зоны вторичного сульфидного обогащения.

На территории России в больших сплошных массах халькозиновые руды в свое время добывались на Турьинских рудниках (Северный Урал). Там же встречались хорошо образованные кристаллы этого минерала, детально изученные акад. П. В. Еремеевым. Бедные вкрапленные халькозиновые руды установлены в крупных месторождениях Коунрад в Казахстане (к северу от оз. Балхаш) и Алмалык в Узбекистане (к югу от Ташкента).

За границей большой известностью пользуется месторождение Бьютт в Монтане (США), где халькозин в парагенезисе с борнитом, энаргитом, пиритом и другими минералами прослежен в первичных рудах значительно ниже уровня грунтовых вод, т. е. является эндогенным минералом.

Практическое значение. Халькозин является самым богатым медью сульфидом, и потому халькозиновые руды важны для медной промышленности более, чем какие-либо другие руды сульфидных месторождений. В настоящее время на долю халькозинсодержащих руд падает весьма значительная часть мировой добычи меди. В частности, к ним относятся крупнейшие по запасам месторождения бедных вкрапленных руд типа Коунрада, массовая эксплуатация которых рентабельна, несмотря на относительно низкое содержание меди.

АРГЕНТИТβ-Ag2S и АКАНТИТα-Ag2S. Названия происходят от лат. argentum — серебро и греч. аканта — шип соответственно. Синоним: серебряный блеск. «Серебряная чернь» является порошковатой разновидностью сернистого серебра и встречается совместно с плотным аргентитом.

Ag2S встречается в виде двух модификаций: 1) более высокотемпературной кубической модификации β-Ag2S, устойчивой выше 179 °С, — аргентита; 2) низкотемпературной псевдоромбической моноклинной модификации α-Ag2S, образующейся при температурах ниже 179 °С, — акантита. Кубическая модификация при понижении температуры претерпевает параморфное превращение в псевдоромбическую модификацию, как это показывает рентгенометрическое исследование кубических кристаллов.

Несмотря на предложение особых названий для каждой модификации сернистого серебра, в минералогической практике фактически укоренилось общее название «аргентит», которое применяется и к параморфозам низкотемпературной модификации по высокотемпературной.

Химический состав. Ag — 87,1 %, S — 12,9 %. Из изоморфных примесей в аргентите нередко наблюдается Cu. Обычно бывает загрязнен также соединениями Pb, Fe, Sb и др.

Сингония кубическая (аргентит), гексаоктаэдрический в. с. 3L44L366L29PC Пр. гр. Pn3m (О9h). Кристаллическая структура. Относится к структурному типу куприта (см. в соответствующем разделе). Низкотемпературная модификация (акантит) — моноклинная (структурно изучена недостаточно). Пр. гр. P21/c(C52h); a0 = 9,47; b = 6,95, с = 8,28; β = 124°. Габитус собственных кристаллов акантита, образовавшихся при температурах ниже 179 °С, — призматически-дипирамидальный, облик — шестоватый до копьевидного. Акантит часто встречается в виде несовершенных, нередко полисинтетиче­ски сдвойникованных кристаллов, в составе параморфоз по кристаллам аргентита, представленным кубом, кубооктаэдром (рис. 91), изредка ромбододекаэдром.

Рис. 91. Кристалл аргентита (обычная форма)

Цвет свинцово-серый. Блеск в изломе металлический.

Твердость 2–2,5. Ковок. Спайность несовершенная по {110} и {100}. Уд. вес 7,2–7,4. Прочие свойства. Проводником электричества становится лишь при высоких температурах. Под действием сильных световых лучей отполированная поверхность аргентита в течение нескольких секунд темнеет.

Диагностические признаки. По макроскопическим, т. е. устанавливаемым на глаз, признакам нелегко поддается определению. Часто сопровождается серебряной чернью, иногда самородным серебром.

П. п. тр. на угле плавится с образованием ковкого королька серебра. В HNO3 растворяется с выделением серы; от прибавления HCl получается густой творожистый белый осадок AgCl, растворяемый в аммиаке.

Происхождение и месторождения. Аргентит встречается в гидротермальных месторождениях сульфидных серебросодержащих руд, часто в парагенезисе с самородным серебром и другими серебросодержащими минералами.

Однако наибольшим распространением этот минерал, вернее акантит, пользуется в нижних частях зон окисления месторождений сульфидных серебросодержащих руд в ассоциации с такими минералами, как церуссит (Рb[СО3]), хлораргирит (AgCl), самородное серебро и др. Наблюдались псевдоморфозы акантита по самородному серебру и многим сложным по составу минералам, представляющим сернистые, мышьяковистые, сурьмянистые соединения серебра (прустит, пираргирит, стефанит и др.).

Большие самостоятельные скопления аргентита наблюдаются крайне редко. В значительных массах вместе с самородным серебром он встречался в месторождении Конгсберг (Норвегия), а также во многих месторождениях Мексики (Цакатекас, Гуанахуато и др.) в ассоциации с сульфосолями серебра (полибазит, пираргирит, прустит и пр.).

На территории России аргентит в виде примазок, реже сплошных небольших масс встречался в Змеиногорском месторождении (Алтай) и изредка в ряде месторождений Нерчинского округа (Восточное Забайкалье) и Верхоянья. Акантит в виде тонких сферолитовых корок слагает узкие волнистые полоски в ритмично-зональных кварцевых жилах эпитермального месторождения Карамкенское (Магаданская область). В кварцевых жилах с адуляром, родохрозитом и родонитом совместно с сульфосолями серебра акантит присутствует в Хаканджинском месторождении (Хабаровский край).

В поздних гидротермально выполненных гнездообразных полостях на одном из участков железо-скарнового месторождения Соколово-Сарбай­ское в Северо-Западном Казахстане акантит в параморфозах по аргентиту находился в неправильной формы выделениях с самородными серебром, мышьяком и серебряно-мышьяковыми сульфосолями, кальцитом и цеолитами.

Практическое значение. Как спутники других серебросодержащих минералов, аргентит и акантит являются источником для получения серебра. Минимальным промышленным содержанием серебра в рудах считают содержание его около 0,02 %.

2. Группа галенита

Из этой группы минералов рассмотрим наиболее распространенный в природе — галенит.

ГАЛЕНИТ — PbS. Название происходит от лат. galaena — свинцовая руда. Синоним: свинцовый блеск. Разновидность: селенистый галенит. Физическая разновидность, известная под названием «свинчак», представляет собой плотную матовую тонкозернистую массу.

Химический состав. Рb — 86,6 %, S — 13,4 %. Из примесей чаще всего присутствуют: Ag до десятых долей процента, Сu, Zn, иногда Se (селенистый галенит в составе непрерывного изоморфного ряда до клаусталлита PbSe), Bi, Fe, As, Sb, Mo, изредка Mn, U и др. В большинстве случаев эти элементы бывают связаны с микроскопически мелкими включениями посторонних минералов. Содержание серебра часто положительно коррелирует с содержанием висмута.

Сингония кубическая; гексаоктаэдрический в. с. 3L44L366L29PC. Пр. гр. Fm3m(О5h). а0 = 5,924. Кристаллическая структура, в которой кристаллизуются сульфиды группы галенита, принадлежит к типу NaCl (рис. 92). Анионы серы расположены по закону плотнейшей кубической (трехслойной) плотнейшей упаковки, а катионы свинца заполняют все октаэдрические пустоты между анионами. В основе элементарной ячейки лежит кубическая гранецентрированная решетка, характеризующаяся тем, что ионы располагаются в вершинах куба и в центре каждой грани, но с тем отличием, что в структуре принимают участие два рода ионов, составля­ющие две одинаковые подрешетки (рис. 92б). Если элементарную ячейку мы разобьем на малые кубы, то ионы каждого сорта будут поочередно занимать их вершины. Координационное число для обоих сортов ионов 6. На рисунке 92 по углам большого куба и в центре граней помещены ионы серы, а ионы свинца уже в промежутках.

Рис. 92. Кристаллическая структура галенита. а — расположение ионов
(черные кружочки — Pb, светлые — S); б — кристаллическая структура,
изображенная в виде шаров, в том же масштабе

Но можно изобразить и наоборот: существо структуры при этом не меняется. Облик кристаллов большей частью кубический, иногда с гранями октаэдра (рис. 93), реже октаэдрический. Наиболее часто встречающиеся формы: {100}, {111}, реже {110}. Двойники по (111). Кристаллы галенита встречаются только в друзовых пустотах. Обычно же он наблюдается в виде зернистых масс или вкрапленных выделений неправильной формы.

Рис. 93. Кубические кристаллы галенита

Цвет галенита свинцово-серый. Черта серовато-черная. Блеск металлический.

Твердость 2–3. Хрупок. Спайность совершенная по кубу. У висмутсодержащих разностей наблюдается отдельность по {111} (вероятно присутствие пластинчатых вростков галенобисмутита — PbBiS2 или матильдита — AgBiS2 в составе структур распада твердого раствора). При нагревании она исчезает и проявляется обычная спайность по кубу. Уд. вес 7,4–7,6. Прочие свойства. Обладает слабой электропроводностью и хорошими детекторными свойствами (падение проводимости при облучении светом).

Диагностические признаки. Легко узнается по цвету, блеску, характерной спайности по кубу, проявляющейся в ступенчатом изломе, низкой твердости и высокому удельному весу. В скрытокристаллических массах, носящих название свинчака, отличается от похожих на него сурьмянистых и мышьяковистых соединений по удельному весу и поведению перед паяльной трубкой.

П. п. тр. легко плавится. С содой дает королек свинца. Легко растворяется в HNO3, давая серу и белый осадок PbSO4 вследствие частичного окисления его при растворении.

Происхождение и месторождения. Галенит почти исключительно распространен в гидротермальных месторождениях. Нередко образует богатые скопления. Весьма характерно, что он почти всегда встречается в парагенезисе со сфалеритом ZnS, по отношению к которому находится обычно в подчиненных количествах. Гидротермальные свинцово-цинковые месторождения образуются либо в виде типичных жил, либо в виде неправильных метасоматических залежей в известняках, либо, наконец, в виде вкрапленников.

Из других минералов в ассоциации с галенитом встречаются: пирит, халькопирит, блеклые руды, сульфосоли серебра, свинца, меди, арсенопирит и др. Из нерудных минералов в этих рудах, кроме кварца и кальцита, встречаются также различные карбонаты, барит (Ba(SO4)), флюорит (CaF2) и др.

При окислении в процессе выветривания месторождений галенит покрывается коркой англезита (Pb(SO4)), переходящего с поверхности в церуссит (Рb(СО3)). Эти труднорастворимые соединения образуют как бы плотную рубашку вокруг центральных, не тронутых разрушением участ­ков галенита, прекращая доступ окисляющих агентов внутрь. Поэтому неудивительно, что сплошные массы галенита в виде желваков с такой рубашкой встречаются в зоне накопления глинистых наносов и даже в россыпях. В отличие от сфалерита за счет галенита в зоне окисления, кроме англезита и церуссита, возникает и ряд других труднорастворимых кислородных соединений: фосфаты, арсенаты, ванадаты, молибдаты и др. Вследствие этого зоны окисления свинцово-цинковых месторождений, как правило, обогащены свинцом.

Из многочисленных месторождений галенитсодержащих руд на территории России отметим лишь некоторые. Наиболее известны: Садон­ское жильное (Северный Кавказ); Алтайские месторождения (Риддер-Сокольное, Змеиногорское) так называемых полиметаллических руд, представленных очень тонкозернистыми массами пирита, сфалерита, халькопирита, галенита и блеклых руд; Дальнегорское месторождение (Приморье) с сульфидным оруденением, вмещаемым волластонит-геденбергитовыми скарнами; Нерчинские в Забайкалье и др.

Разведаны многочисленные полиметаллические месторождения в Средней Азии (Карамазарские горы и др.). Из иностранных отметим также крупнейшие месторождения США, такие как Джоплин (штат Миссури), в виде вкрапленности и рассеянных гнезд в известняках и глинистых сланцах на обширной территории, Ледвилл («Свинцовый город») в Колорадо и др.

Практическое значение. Галенит представляет собой важнейшую свинцовую руду. Почти все мировое производство свинца связано с добычей этого минерала.

Помимо выплавки металла, применение которого общеизвестно, небольшая часть галенитовых руд перерабатывается на глет PbO с целью получения свинцовых препаратов, в частности красок (белил, сурика, крона и др.) и глазури.

При плавке попутно со свинцом извлекаются значительные количества серебра, которое в виде серебросодержащих минералов связано с галенитом, а иногда и висмута.

3. Группа сфалерита

Сюда относятся полиморфные минералы типа АХ, кристаллизующиеся в кубической и гексагональной сингониях (в кристаллических структурах типа сфалерита и вюртцита с тетраэдрической координацией ионов). Здесь же рассмотрим сульфид ртути (киноварь), близкий по некоторым свойствам к группе сфалерита, но существенно отличающийся по кристаллической структуре.

СФАЛЕРИТ — ZnS. Название происходит от греч. сфалерос — обманчивый, очевидно, потому, что по внешним признакам он совершенно не похож на обычные сульфиды металлов. Синоним: цинковая обманка. Разновидности: клейофан — светлоокрашенная или бесцветная разновидность (почти без примесей); марматит — черная железистая разновидность сфалерита; пршибрамит — богатая кадмием (Cd до 5 %) разновидность.

Химический состав. Zn — 67,1 %, S — 32,9 %. В качестве примесей чаще всего присутствует Fe (до 20 %); такие разновидности под микроскопом обнаруживают мельчайшие включения пирротина (Fe1–хS) как продукта распада твердого раствора. Иногда в виде таких же включений присутствует халькопирит (CuFeS2) и изредка станнин (Cu2FeSnS4), чем и объясняется примесь в сфалерите меди и олова. Нередко в виде изоморфной примеси присутствуют: Cd (обычно до десятых долей процента), In (до сотых долей процента), Сo, Mn, Hg и др.

Сингония кубическая; гексатетраэдрический в. с. 3L244L36P. Пр. гр. F4–3m(T2d). a0 = 5,40. Кристаллическая структура характеризуется трехслойной (кубической) плотнейшей упаковкой анионов серы. Катионы цинка занимают половину тетраэдрических пустот между анионами. Структура похожа на структуру алмаза, с той разницей что центры малых кубов заняты иными атомами (ионами), чем вершины и центры граней большого куба. Как показано на рисунке 94, вокруг каждого иона S по вершинам тетраэдра располагаются четыре иона цинка. В элементарной ячейке, показанной на этих рисунках, заключено четыре иона серы, занимающих центры половинного числа малых кубов. Характерно, что все эти тетраэдры ориентированы одинаково, что и приводит в целом к симметрии тетраэдра, а не куба. В отличие от алмаза спайность в кристаллах сфалерита проходит не по плоскостям октаэдра, а по плоскостям ромбододекаэдра {110}, так как эти плоские сетки одновременно содержат ионы Zn и S, и притом в равных количествах, что делает их электронейтральными и потому слабосвязанными.

Рис. 94. Кристаллическая структура сфалерита.
а — расположение центров ионов цинка
(черные кружочки) и серы (светлые кружочки);
б — та же структура, изображенная в виде тетраэдров, внутри
каждого из которых располагаются центры ионов серы;
в — кристаллическая структура, изображенная в виде шаров

Облик кристаллов. Часто встречается в виде хорошо образованных кристаллов в друзовых пустотах. Облик чаще всего тетраэдрический (рис. 95), причем положительные и отрицательные формы нередко отличаются характером блеска и фигурами травления. Иногда грани {110} преобладают и кристаллы приобретают додекаэдрический габитус. Двойники нередко по (111). Агрегаты. Сплошные массы характеризуются явнозернистой структурой, легко распознаваемой благодаря резко проявленной спайности в отдельных зернах. Реже встречаются почковидные формы образований.

Рис. 95. Тетраэдрические кристаллы сфалерита

Цвет сфалерита обычно бурый или коричневый; часто черный (марматит), реже желтой, красной и зеленоватой окраски. Известны совершенно бесцветные до желтых прозрачные разновидности (клейофан). Черта белая или светлоокрашенная в оттенки желтого и коричневого до серого, всегда светлее цвета самого минерала. Разности, богатые железом, дают бурую черту. Блеск алмазный. От практически непрозрачного (марматит) до хорошо просвечивающего. Показатель преломления в Na-свете N = 2,37.

Твердость 3–4. Довольно хрупок. Спайность совершенная по {110}. Уд. вес 3,9–4. Прочие свойства. Электричества не проводит. Обладает полярным термоэлектричеством. Некоторые разновидности при трении или раскалывании фосфоресцируют.

Диагностические признаки. Характерны изометрической формы кристаллические зерна, обладающие спайностью по ромбододекаэдру, т. е. по шести направлениям, отвечающим плоским сеткам в структуре, сложенным атомами цинка и серы. Этим железистые разности сфалерита легко отличаются от весьма похожих на них по цвету, твердости, блеску и другим признакам вольфрамита — (Fe,Mn)WO4 и энаргита — Cu3AsS4, которые обладают призматическим обликом зерен и спайностью в одном направлении.

П. п. тр. растрескивается, но почти не плавится. В окислительном пламени на угле дает белый налет окиси цинка. В концентрированной HNO3 растворяется с выделением серы. При реакции с HCl в порошке выделяет H2S.

Происхождение и месторождения. Главная масса месторождений сфалерита, так же как и галенита, с которым он почти постоянно ассоциирует, принадлежит к гидротермальным месторождениям (см. галенит). В некоторых сульфидных месторождениях бывает связан с халькопиритом.

В экзогенных условиях образуется крайне редко. Был встречен в некоторых месторождениях угля.

При процессах окисления сфалерит разлагается сравнительно быстро с образованием сульфита цинка, легко растворимого в воде, вследствие чего зоны окисления бывают сильно обеднены цинком (ср. галенит). Если боковые породы месторождения представлены известняками, то в них образуются скопления карбоната цинка — смитсонита.

Сфалерит в свинцово-цинковых месторождениях, отдельные примеры которых были приведены выше (см. галенит), как правило, значительно преобладает в количественном отношении над галенитом.

В некоторых месторождениях встречаются друзы хорошо образованных кристаллов сфалерита с кальцитом, кварцем и другими минералами, например, в Дальнегорском месторождении (Приморье); в месторождениях Нагольного кряжа (Украина) и в Мадане (Родопы, Болгария).

В ряде пунктов встречены очень интересные колломорфные образования сфалерита в виде концентрически-полосчатых почковидных выделений в пустотах среди известняков в ассоциации с галенитом, пиритом, марказитом, халькопиритом, кальцитом или доломитом.

В тесной ассоциации с халькопиритом (почти без галенита) наблюдается в ряде так называемых колчеданных залежей Урала: месторождения Карпушинское, им. III Интернационала и др.

Из наиболее интересных в минералогическом отношении иностранных месторождений отметим следующие: Пршибрам (Чехия); прекрасные кристаллы в пустотах среди доломита в Биннентале (Швейцария), замечательные по прозрачности кристаллы сфалерита из месторождений района Сантандер (Северная Испания).

Практическое значение. Сфалерит является главной рудой цинка. Попутно с цинком из сфалеритовых руд извлекаются ценные редкие металлы: Cd, In и Ga.

При обжиге и плавке полиметаллических руд ZnS, окисляясь в ZnO, в значительной мере улетучивается с отходящими газами. Поэтому обычно прибегают к предварительному обогащению руд с разделением их на свинцовый и цинковый концентраты. Последний после предварительного обжига в особых печах с целью окисления цинка подвергается восстановительной плавке в закрытых ретортах с перегонкой цинка.

Металлический цинк, получаемый возгонкой, не обладает чистотой и употребляется для изготовления оцинкованного железа. Очистка сырого цинка производится путем электролиза. Электролитический цинк употребляется для изготовления латуни, бронзы и других сплавов.

Кроме того, сфалерит в небольших количествах непосредственно упо­требляется для изготовления цинковых белил, а также флюоресцирующих экранов и др.

Кадмий (собственные минералы состава CdS: кубический хоулеит и гексагональный гринокит), в главной своей массе добываемый попутно из сфалеритовых руд, находит применение: в гальванопластике при покрытии изделий из стали и железа с целью борьбы с коррозией металла; для получения легкоплавких сплавов, более прочных и обладающих большей сопротивляемостью высоким температурам и истиранию, чем баббитовые, в состав которых в значительном количестве входит дефицитное олово; в производстве аккумуляторов; для автоматических противопожарных аппаратов и др.

Галлий представляет собой металл, по свойствам во многом напоминающий алюминий; он плавится при 29 °С, а с алюминием образует сплав, при обыкновенной температуре жидкий; температура кипения галлия в отличие от ртути очень высокая (1700–2300 °С), что позволяет применять его в ряде случаев вместо ртути для наполнения термометров и других точных приборов. Галлиевые лампы дают свет, близкий к солнечному.

Индий как антикоррозионный металл употребляется для покрытий металлических изделий, а также в производстве рефлекторов для прожекторов и автомобильных фар. Органические соединения индия применяются для борьбы с сонной болезнью.

ВЮРТЦИТ — ZnS. Разновидность: эритроцинкит — марганецсодержащий вюрцит (Zn,Mn)S.

Химический состав такой же, как у сфалерита. Обычно содержит повышенное количество кадмия.

Сингония гексагональная; дигексагонально-пирамидальный в. с. L66P. Пр. гр. P63(С46v). а0 = 3,798; с0 = 6,23. Кристаллическая структура характеризуется гексагональной (двухслойной) плотнейшей упаковкой анионов серы (рис. 96)1. Катионы цинка, так же как и в структуре сфалерита, занимают половину тетраэдрических пустот одной ориентации. Близость кристаллических структур этих минералов, соотносящихся как политипные модификации, обусловливает и близость ряда физических свойств (уд. веса, твердости, цвета и др.). Существенные отличия вюртцита заключаются, естественно, в оптиче­ской анизотропии и форме встречающихся кристаллов. Облик кристаллов пирамидальный, короткостолбчатый или таблитчатый.

Рис. 96. Кристаллическая структура вюртцита

Цвет вюртцита, так же как и сфалерита, варьирует в зависимости главным образом от примеси Fe от светлого до бурого и черного. Черта соответственно меняется от бесцветной до бурой. Блеск алмазный.

Твердость 3,5–4. Хрупок. Спайность совершенная по призме {110} и несовершенная по {0001}. Уд. вес 4–4,1.

Диагностические признаки. В параллельно-шестоватых агрегатах можно отличить от сфалерита благодаря характеру спайности. В сплошных массах внешне неотличим от сфалерита. Оптическая анизотропия его может быть установлена только под микроскопом. По поведению перед паяльной трубкой и в кислотах неотличим от сфалерита.

Происхождение и месторождения. Является сравнительно редким минералом. В некоторых гидротермальных месторождениях, образовавшихся при низких температурах, встречается совместно со сфалеритом.

В очень незначительных количествах совместно со сфалеритом установлен в некоторых месторождениях Урала: Блява, Яман-Касы; на Алтае (Николаевское), в Якутии (ПраваяУдарница). В ближнем зарубежье установлен на территории Киргизии: Ак-Тюз, Караваш и Западной Украины: Берегово.

Из иностранных месторождений наибольший минералогический интерес представляют следующие: концентрически-зональные колломорфные разности в Пршибраме (Чехия), хорошо образованные пирамидальные кристаллы месторождения Бьютт в Монтане (США), Оруро и Потози (Боливия) и др.

Самостоятельного практического значения этот минерал не имеет.

ГРИНОКИТ — CdS. Синоним: кадмиевая обманка. Редкий. Содержание Cd — 77 %. Иногда содержит индий.

Сингония гексагональная; дигексагонально-пирамидальный в. с. Пр. гр. та же, что и у вюртцита, а0 = 4,142; с0 = 6,724.

Редко встречающиеся мелкие кристаллы имеют бочонковидные или остропирамидальные формы. Обычно наблюдается в виде порошковатых и землистых примазок.

Цвет канареечно-желтый, оранжево-желтый, темно-оранжевый. Черта оранжево-желтая до кирпично-красной. Блеск алмазный.

Твердость 3–3,5. Хрупок. Спайность совершенная по {110}. Уд. вес — 4,9–5.

Диагностические признаки. От сходных с ним аурипигмента As2S3, реальгара AsS и вульфенита Рb[МоО4] отличается по поведению п. п. тр. (при сильном прокаливании с содой дает красно-бурый налет CdO). При растворении гринокита в кислотах чувствуется сильный запах H2S. Реакция на кадмий производится со спиртовым раствором дифенилкарбазида на фильтровальной бумаге.

Происхождение и месторождения. Наблюдается в ассоциации с кадмийсодержащим сфалеритом или вюрцитом. Значительные скопления гринокита до сих пор не наблюдались.

В виде мельчайших кристалликов в пустотах на халькопирите и галените был встречен в колчеданной залежи Сибаевского месторождения (Южный Урал), очевидно, как экзогенный минерал. Отмечен также в Дукатском месторождении (Магаданская область).

В ближнем зарубежье встречался в зоне окисления ряда месторождений: Кызыл-Эспе (Центральный Казахстан), Гайнах-Кан, Кан-Сай, Обисорбух (Таджикистан).

Из месторождений зарубежных стран должны быть отмечены Пршибрам (Чехия), Фриденсвил в Пенсильвании (США) и др.

О применении кадмия см. сфалерит.

КИНОВАРЬα-HgS. Предполагают, что название перешло из Индии, где так называются красная смола и «кровь дракона». Кубическая, менее распространенная модификация β-HgS носит название метациннабарит; для него характерны выделения в виде мелких черных, просвечивающих красным цветом тетраэдрических кристаллов, внешне схожих со сфалеритом.

Химический состав. Hg — 86,2 %, S — 13,8 %. Посторонние элементы обычно связаны с механическими примесями.

Сингония тригональная; тригонально-трапецоэдрический в. с. L33L2. Пр. гр. P312(D43) или P322(D63). а0 = 4,16; с0 = 9,54. Кристаллическая структура имеет гексагональный облик. В целом ее можно рассматривать как искаженную структуру NaCl с координационным числом 6 (точнее — 2 + 4 как для Hg, так и для S). Особенностью кристаллического строения являются непрерывные спиральные цепи S—Hg—S, характеризующиеся ковалентной связью между ионами и вытягивающиеся параллельно оси с (по правой или левой винтовой оси), что сказывается на сильно выраженной способности вращения плоскости поляризации. Более слабая связь между этими цепочками-молекулами обусловливает отчетливую спайность по призме {100}.

Облик кристаллов. Киноварь встречается в виде мелких толстотаблитчатых по (0001) или ромбоэдрических кристаллов с гранями {101}, {205} и др. (рис. 97), иногда с гранями трапецоэдра. Характерные двойники прорастания по (0001) (рис. 98). Агрегаты. Гораздо чаще наблюдается в виде вкрапленных неправильных по форме зерен, иногда в сплошных массах, а также в виде порошковатых примазок и налетов. Так называемая печенковая руда представляет собой скрытокристаллические массы, богатые посторонними землистыми и органическими примесями.

Рис. 97. Кристалл киновари

Рис. 98. Двойник киновари r {101}, n {201}, x {423}

Цвет киновари красный, иногда со свинцово-серой побежалостью. Черта красная. Блеск сильный полуметаллический. Полупрозрачна.

Твердость 2–2,5. Хрупка. Спайность по {100} довольно совершенная. Уд. вес 8,09. Прочие свойства. В отличие от метациннабарита киноварь не проводит электричества.

Диагностические признаки. Киноварь довольно легко узнается по красному цвету, низкой твердости, высокому удельному весу и поведению п. п. тр.

П. п. тр. на угле возгоняется без остатка. Испарение начинается с температуры 200 °С. При нагревании в закрытой трубке образуется черный возгон, состоящий частью из кубической HgS, частью из металлической ртути, а также налета серы. При нагревании в открытой трубке, т. е. в присутствии кислорода, образуется металлическая ртуть, осаждающаяся на холодных стенках трубки в виде мельчайших шариков, по реакции: HgS + O2 = Hg + SO2. На этом основаны заводские методы получения ртути.

Растворяется в царской водке. Хлор вообще разлагает киноварь. Разлагается в растворах сульфидов едких щелочей; HNO3 и H2SO4 не действуют.

Происхождение и месторождения. Месторождения киновари относятся исключительно к числу гидротермальных, образовавшихся при низких температурах. Известны примеры отложения киновари из горячих щелочных растворов, выходящих на поверхность земли (таковы, например, источники Стимбот в Неваде и Салфор-Бэнк в Калифорнии, США). Из рудных минералов в ассоциации с киноварью встречаются: часто антимонит (Sb2S3), пирит, марказит, реже арсенопирит (Fe[AsS]), реальгар (As4S4), иногда сфалерит, халькопирит и др. Из нерудных минералов, сопровождающих выделения киновари, распространены обычно кварц, кальцит, нередко флюорит, барит, иногда гипс и др.

В зонах окисления ртутных месторождений как вторичные образования встречаются: метациннабарит в виде черных пленок, самородная ртуть и изредка хлориды ртути. Вообще же киноварь в окислительной обстановке в отличие от многих других сульфидов довольно устойчива. Этим обстоятельством обусловливается тот факт, что она нередко присутствует в россыпях, при промывке которых благодаря высокому удельному весу улавливается в шлихах.

Несколько средних по запасам месторождений известны на Чукотке — Палянское и Пламенное; в Корякии — Тамватней; в Якутии — Звездочка; в Горном Алтае — Акташ. Ряд небольших месторождений известен на Кавказе. Из них минералогический интерес представляет Хидешлепское, в котором киноварь ассоциирует с ярко-красным реальгаром AsS.

Более значительные месторождения установлены в Средней Азии, главным образом вдоль северных предгорий Алайского и Туркестанского хребтов: Хайдарканское и Чаувайское (Киргизия). Киноварь находится здесь в ассоциации с кварцем, антимонитом, флюоритом, кальцитом, баритом и другими минералами в виде мелких зерен в рудных брекчиях. Наиболее крупным месторождением киновари в Восточной Европе является Никитовское (Донбасс, Украина). Здесь она встречается в виде вкрапленности и жилок в ассоциации с кварцем, антимонитом, арсенопиритом и изредка пиритом, преимущественно среди песчаников.

Из прочих иностранных месторождений большой известностью пользуются крупные месторождения Альмаден (Испания), Идрия (Югославия) и Нью-Идрия в Калифорнии (США).

Практическое значение. Является почти единственным источником получения ртути. Самородная ртуть в природе встречается сравнительно редко. Ртуть употребляется преимущественно для амальгамации золота при добыче его из коренных руд, для изготовления химикалий, гремучей ртути Hg(CNO) — взрывчатого вещества для детонаторов и в физических приборах.

4. Семейство пирротина

В этой группе объединены соединения металлов VIII группы периодической системы элементов (в частности, Fe, Ni и Co) с S, As и Sb c общей формулой АХ (или близкими к ней).

Здесь мы рассмотрим следующие минералы: группа пирротина, никелин, миллерит и пентландит.

ГЕКСАПИРРОТИН — Fe1–хS (чаще всего х = 0,1–0,2). Иногда формулу его обозначают в виде FeS, что соответствует троилиту, встреча­ющемуся исключительно в метеоритах и в восстановительных парагенезисах совместно с алмазом, самородным железом и т. п. Название происходит от греч. гекса — шесть, гексагональный и пиррос — огнецветный.

КЛИНОПИРРОТИН — Fe7S8. Два этих вида не всегда просто различить, поэтому часто в литературе применяется нейтральный групповой термин «пирротин». Синоним: магнитный колчедан.

Химический состав. Против формулы FeS в пирротинах практиче­ски всегда наблюдается «избыточное» содержание серы: вместо 36,4 % оно доходит до 39–40 %. Из примесей иногда присутствуют в незначительных количествах Cu, Ni, Co, изредка Mn, Zn и др. (первые три металла — главным образом за счет включений халькопирита и пентландита).

Сингония троилита и гексапирротина гексагональная; дигексагонально-дипирамидальный в. с. L66L27PC. Для гексапирротинов отмечено несколько политипных разновидностей, большинство его модификаций устойчивы при температурах выше 300–350 °С. Пр. гр. P63/mmc (D46h). a0= 6,872; с0 = 11,444 (с увеличением х величина с возрастает). Кристаллическая структура пирротинов характеризуется гексагональной плотно­упакованной структурой типа никелина (см. ниже).

Как показывают рентгенометрические исследования, избыток (против формулы FeS) серы не может быть объяснен тем, что добавочные крупные ионы S2– входят куда-то в промежутки в кристаллической структуре пирротина, так как для этого в ней нет достаточных по размерам пустот. Можно предположить, что либо ионы S2– частично заменяют ионы железа, либо при постоянном числе анионов S2– некоторые места катионов Fe остаются незанятыми.

К решению этого вопроса подошли путем сопоставления вычисленных удельных весов для обоих вариантов. На рисунке 99 изображены две кривые: верхняя кривая показывает вычисленные значения удельных весов при предположении, что ионы S частично заменяют ионы Fe; нижняя — для другого варианта, когда часть мест для ионов Fe остается незанятой; кружками показаны значения удельных весов реально существующих в природе разностей пирротина. Сравнивая эти данные, легко убедиться в том, что второе предположение оказывается правильным. В таком случае следует допустить, что для погашения общего отрицательного заряда анионов S2– часть ионов железа должна иметь не двухвалентный, а трехвалентный положительный заряд. Таким образом, намечается дефектный изоморфизм вычитания по схеме 2Fe3+ 3Fe2+.

Рис. 99. Кривыми показаны вычисленные удельные веса.
Кружками изображены удельные веса, установленные
для пирротина в действительности

Действительно, вакансии в позициях железа установлены в большинстве пирротинов, при этом в случае статистического их распределения мы имеем гексагональную высокосимметричную модификацию, а по мере спада температуры происходит постепенное упорядочение вакансий и, как следствие, снижение симметрии до моноклинной (пр. группа F2/d) и кратное увеличение параметров решетки. Для клинопирротина также характерны разновидности в связи с политипией.

Облик кристаллов. Кристаллы вообще редки. Обычно они имеют таблитчатый, реже столбчатый или пирамидальный облик (рис. 100 и 101) с наиболее часто встречающимися гранями пинакоида {0001}, призмы {100}, дипирамид {101}, {201} и др. Двойники редки по (101). Обычно встречается в сплошных массах или в виде вкрапленных зерен неправильной формы.

Рис. 100. Таблитчатый кристалл пирротина

Рис. 101. Двойник пирротина

Цвет пирротина кремовый до серого с бронзово-желтым оттенком, часто с бурой побежалостью. Черта серовато-черная. Блеск металлический.

Твердость 4. Довольно хрупок. Спайность несовершенная по {100}. Кроме того, иногда наблюдается отдельность по {0001}. Уд. вес 4,58–4,7. Прочие свойства. Ферромагнитны практически все клинопирротины, гексапирротин часто оказывается немагнитным, что верно относительно всех троилитов. Хороший проводник электричества.

Диагностические признаки. Характерными для минералов этой группы являются их цвет и часто устанавливаемые магнитные свойства.

П. п. тр. сплавляется в черную магнитную массу. В HNO3 и HCl разлагается с трудом, что резко отличает пирротины от троилита (FeS).

Происхождение и месторождения. Пирротин в сравнительно редких случаях является высокотемпературным минералом. Образование его, так же как и пирита (Fe[S2]), зависит не столько от температуры, сколько от концентрации ионов серы в растворах: при высокой концентрации S2– железо выделяется в виде дисульфида (Fe[S2]), при пониженной — в виде моносульфида (FeS).

Пирротин распространен почти исключительно в эндогенных месторождениях и в различных генетических типах.

1. Довольно широким распространением он пользуется в основных изверженных породах, главным образом в норитах, иногда в габбро-диабазах. В них среди сульфидных скоплений он является главным минералом, встречаясь в тесной ассоциации с пентландитом и халькопиритом (месторождения медно-никелевых сульфидных руд: Норильская группа, Печенга и Мончегорское на Кольском полуострове). За рубежом крупнейшим аналогом является Садбери (Канада).

2. В контактово-метасоматическом типе месторождений иногда образует значительные скопления, главным образом у границы с известняками. В парагенезисе с ним в этих месторождениях встречаются халькопирит, пирит, магнетит, черный сфалерит, арсенопирит, иногда касситерит (SnO2), шеелит (Ca[WO4]), кальцит, кварц и др. Все они образуются в более позднюю стадию процесса скарнообразования. Из контактово-метасоматических месторождений укажем на Башмаковское и Богословское — в группе Турьинских рудников (Северный Урал).

3. В ряде типичных гидротермальных месторождений (например, Дальнегорское в Приморье) наблюдается в ассоциации со сфалеритом, галенитом, халькопиритом, касситеритом, арсенопиритом, железистыми хлоритами, карбонатами и др. Среди этих минералов пирротин принадлежит к числу наиболее поздних. В друзовых пустотах хорошо образованные кристаллы его обычно наблюдаются наросшими на кристаллах таких более ранних минералов, как сфалерит, кварц, кальцит и др.

4. Редкие находки своеобразных выделений пирротина были сделаны среди осадочных образований в ассоциации с сидеритом (Керченское месторождение железа, Украина), а также в фосфоритовых желваках.

На поздних стадиях гидротермального процесса, при росте активности серы, пирротин замещается сначала метастабильным марказитом, а затем пиритом. При выветривании в зоне окисления он является наиболее легко разлагающимся сульфидом. Первоначально образуется сульфат закиси железа, который в присутствии кислорода переходит в сульфат окиси железа. Последний, гидролизуясь, дает нерастворимые гидроокислы железа (лимонит) и свободную серную кислоту, переходящую в раствор.

Практическое значение. Залежи сплошных пирротиновых руд, не содержащих других металлических полезных ископаемых, имеют ограниченное промышленное значение. Как сырье для сернокислотного производства, эти руды значительно уступают пиритовым. Содержание в них серы обычно не превышает 30–32 %, тогда как в пиритовых оно достигает 45–50 %.

НИКЕЛИН — NiAs. Синоним: красный никелевый колчедан.

Химический состав. Ni — 43,9 %; As — 56,1 %. Примеси: Fe (до 2,7 %), S (до 5 %), иногда Sb и Со. Обычно наблюдаемые широкие колебания в составе никелина часто обусловлены примесями посторонних минералов, обнаруживаемыми под микроскопом.

Сингония гексагональная; дигексагонально-дипирамидальный в. с. L66L27PC. Пр. гр. P63/mmc (D46h). a0 = 3,616, c0 = 5,020. Кристаллическая структура характеризуется гексагональной структурой с плотнейшей упаковкой атомов мышьяка и заполнением всех октаэдрических пустот атомами никеля (рис. 102а). Она может быть получена также из примитивной гексагональной упаковки атомов никеля заполнением половины из числа тригональных призм атомами мышьяка (рис. 102б). Таким образом, каждый атом мышьяка окружен шестью атомами никеля по тригональной призме, а каждый атом никеля — шестью атомами мышьяка по октаэдру. Кроме того, каждый атом никеля близок к двум другим атомам никеля (по вертикали), являющимся также его ближайшими соседями. Этим объясняется особенность кристаллических структур подобного типа, которая выражается в том, что связь атомов в данных структурах отчасти обладает признаками ионной, а отчасти металлической связи. Это сказывается не только на повышении таких свойств, как отражательная способность, электропроводность и др., но также на некотором непостоянстве состава соединений, кристаллизующихся в структуре этого типа.

Рис. 102. Кристаллическая структура никелина.
а — места расположения центров атомов никеля и мышьяка;
б — кристаллическая структура, изображенная в виде шаров

Облик кристаллов. Кристаллы встречаются очень редко, притом в неясно образованных формах, с господствующими гранями {100}. Обычно встречается в сплошных массах, иногда в почковидных, дендритовых и других формах.

Цвет никелина бледный медно-красный с желтоватым оттенком. Черта буровато-черная. Блеск металлический.

Твердость 5. Хрупок. Спайность несовершенная по {100}. Уд. вес 7,6–7,8. Хороший проводник электричества.

Диагностические признаки. Весьма характерны бледный медно-красный цвет, металлический блеск и относительно высокая твердость, а также налеты зеленых охр аннабергита.

П. п. тр. на угле плавится в блестящий хрупкий королек, причем издает сильный чесночный запах. В закрытой трубке при сильном накаливании на холодных стенках образуется зеркало мышьяка. Раствор в HNO3 имеет яблочно-зеленый цвет, от прибавления аммиака раствор становится голубым. С диметилглиоксимом дает густой розовый осадок.

Происхождение и месторождения. Чаще всего встречается в гидротермальных жильных месторождениях, иногда в значительных количествах в виде вкрапленности или сплошных масс. В парагенезисе с ним нередко наблюдаются диарсениды никеля — хлоантит, раммельсбергит, иногда самородный висмут, самородное серебро и др.

В процессе выветривания за счет никелина образуется ярко-зеленый минерал аннабергит — Ni3[AsO4]2 . 8H2O.

В России наиболее интересные находки никелина были сделаны в Берикульском золоторудном месторождении в Кемеровской области (Западная Сибирь). Вместе с другими арсенидами никеля (раммельсбергитом, герсдорфитом и др.) наблюдался в виде сплошных масс неправильной гнездообразной формы в прожилках карбонатов. Никелин совместно с диарсенидами и сульфоарсенидами никеля и кобальта слагает концентрически-зонные почковидные агрегаты с поздним доломитом на месторождении Хову-Аксы (Тува). В Белореченском месторождении (Краснодарский край) никелин с раммельсбергитом и урановыми чернями формирует ветвистые сфероидолитовые дендриты, заключенные в карбонатный жильный материал.

Из иностранных следует отметить некоторые жильные гидротермальные месторождения Рудных гор (Саксония) так называемой кобальто-никелево-серебряной формации с самородным висмутом (тип Шнееберг) и затем известное месторождение Кобальт в Онтарио (Канада). Здесь он наблюдается в ассоциации с сульфидами и арсенидами никеля и кобальта, а также самородным серебром и другими минералами.

Практическое значение. Никелинсодержащие руды при значительных запасах могут являться важной промышленной рудой.

МИЛЛЕРИТ — NiS. Синоним: волосистый колчедан.

Химический состав. Ni — 64,7 %, S — 35,3 %. Из примесей присутствуют Fe (до 1–2 %), Со (до 0,5 %), Cu (до 1 %).

Сингония тригональная: дитригонально-скаленоэдрический в. с. L363L23PC. Пр. гр. R3m(С53v). а0 = 9,60; с0 = 3,15. Кристаллическая структура отлична от структуры пирротина и искусственной модификации NiS (тип никелина с координационным числом 6). Структура этой модификации с координационным числом 5 (промежуточным между высокотемпературной модификацией NiS и пентландитом) очень сложная. Основной ее мотив представляет собой пустотелую тригональную призму, стенки которой сложены имеющими общие вершины и ребра полуоктаэдрами NiS5. Квадратные основания полуоктаэдров обращены внутрь призм таким образом, что атомы никеля выступают внутрь призмы в направлении к ее оси и сближаются на расстояния, достаточно малые для того, чтобы атомы никеля могли вступить в металлическую связь друг с другом.

Облик кристаллов. Обычно кристаллы имеют игольчатую форму с грубой продольной штриховкой. Агрегаты. Часто встречается в радиально-лучистых, волосистых агрегатах. По этому признаку и назывался раньше волосистым колчеданом.

Цвет миллерита латунно-желтый, иногда с радужной побежалостью. Черта зеленовато-черная. Блеск сильный металлический.

Твердость 3–4. Хрупок. Волосистые кристаллы несколько упруги. Спайность совершенная по {1011} и {0112}. Уд. вес 5,2–5,6. Прочие свойства. Хороший проводник электричества (следствие делокализации электронов в металлической связи Ni—Ni).

Диагностические признаки. Очень характерны часто встречающи­еся игольчатые формы и радиально-лучистые агрегаты латунно-желтого цвета. В тех случаях когда он встречается в неправильной формы зернах или массах, без проверки химическим путем содержания в нем никеля и серы определить его бывает очень трудно.

П. п. тр. на угле плавится с образованием блестящего кипящего королька. В восстановительном пламени в конце концов дает плотную металлическую слабомагнитную массу никеля. В HNO3 и царской водке растворяется, окрашивая раствор в зеленый цвет (в данном случае обусловленный никелем), выделяя серу. Наблюдается весьма характерная реакция на никель с диметилглиоксимом.

Происхождение и месторождения. Принадлежит к числу сравнительно редко встречающихся в природе минералов и в подавляющем большинстве случаев является типичным образованием гидротермального происхождения.

Иногда встречается в месторождениях медно-никелевых сульфидных руд как позднейший гидротермальный минерал, развивающийся за счет пентландита, в частности — в месторождениях Норильской группы.

В типичных жильных гидротермальных месторождениях скопления его наблюдаются в ассоциации с другими никелевыми и кобальтовыми минералами, представленными главным образом сернистыми и мышьяковистыми соединениями. В этих случаях наблюдается в лучистых агрегатах в парагенезисе с линнеитом, герсдорфитом, галенитом, флюоритом, кальцитом, кварцем и др.

На территории России минералогическое значение имеют находки в районе Березовского золоторудного месторождения на Урале в виде лучистых или сноповидных агрегатов в тонких карбонатных жилках среди лиственитов (метасоматически измененных ультраосновных пород). Игольчатые кристаллы и их пучки с Cr-хлоритами и кальцитом находятся в пустотах минерализованных уваровитом трещин альпийского типа в сплошных хромитовых рудах Сарановского месторождения на Северном Урале.

Из иностранных наибольшей известностью пользуются месторождения Рудных гор (Саксония), в частности Фрайберг, Шнееберг и др., где миллерит ассоциирует с другими сульфидами никеля и кобальта, а также с галенитом, кальцитом, флюоритом и пр. Тонколучистые агрегаты миллерита известны в каменноугольном месторождении Кладно (Чехия).

Практическое значение. Как один из наиболее богатых никелем минералов, представляет несомненный интерес для промышленности цветных металлов даже в тех случаях, когда наблюдается редко вкрапленным в породе или руде, особенно если находится в ассоциации с другими никелевыми или кобальтовыми минералами.

ПЕНТЛАНДИТ — (Fe,Ni)9S8. Синоним: железоникелевый колчедан.

Химический состав непостоянный. Соотношение между Fe и Ni обычно 1 : 1. Постоянно присутствует кобальт в количестве от 0,4 до 2,5 % (иногда больше) в виде изоморфной примеси к никелю, иногда — серебро.

Сингония кубическая; гексаоктаэдрический в. с. 3L44L366L29PC. Пр. гр. Fm3m(O5h). а0 = 10,02. В хорошо образованных кристаллах в природе до сих пор не был встречен. В виде неправильной формы зерен и включений распространен в пирротиновых рудах магматических месторождений типа Норильска и Садбери. Кристаллическая структура. Анионы серы образуют плотнейшую кубическую упаковку. Катионы железа и никеля в основном заполняют половину тетраэдрических пустот (по числу анионов серы), а другая часть их (в соответствии с химической формулой) — одну восьмую октаэдрических пустот. Атомы металла в структуре склонны к образованию изометричных гроздьевидных обособлений (кластеров) с осуществлением металлической связи.

Цвет пентландита бронзово-желтый до серого, несколько светлее, чем пирротина. Черта зеленовато-черная. Блеск металлический.

Твердость 3–4. Хрупок. Спайность совершенная по октаэдру {111}, излом ступенчатый. Уд. вес 4,5–5. Прочие свойства. Магнитностью не обладает. Хороший проводник электричества.

Диагностические признаки. Макроскопически установить пентландит крайне трудно, так как он обычно встречается в виде мельчайших выделений среди пирротиновой массы. Лишь крупные зерна можно узнать по несколько более светлому оттенку по сравнению с пирротином и хорошо выраженной спайности.

П. п. тр. сплавляется в черный магнитный шарик. HNO3 растворяет его, окрашиваясь в зеленый цвет. Прибавление NH4OH вызывает выпадение бурого осадка гидроокиси железа. С диметилглиоксимом дает резко выраженную реакцию на никель.

Происхождение и месторождения. Встречается почти постоянно в парагенетической ассоциации с пирротином и халькопиритом, но только в тех сульфидных рудах, которые генетически связаны с основными и ультраосновными изверженными породами (габбро-норитами, перидотитами и др.). Парагенезис этих трех минералов в указанных породах настолько характерен, что достаточно бывает установить в них более легкоопределяемые минералы — пирротин и халькопирит, чтобы получить уверенность в том, что при тщательном микроскопическом изучении может быть обнаружен и пент­ландит, имеющий важное промышленное значение. В небольших количествах встречаются также магнетит и минералы платины: сперрилит — Pt[As2], палладистая платина, куперит — PtS, брэггит — (Pt,Pd,Ni)S и др.

В зоне окисления за счет никелевых сульфидов образуется легко растворимый в воде сульфат никеля, нередко наблюдаемый в пустотах и на стенках выработок в виде бледно-зеленых сталактитов и кристаллических корочек состава NiSO4 . 7H2O (моренозит) или NiSO4 . 6H2O (рётгерсит).

На территории России известны крупнейшие залежи пентландитсодержащих медно-сульфидных руд в Норильске, Мончегорске и Печенге.

Одно из крупнейших месторождений таких руд, известное под названием Садбери, находится в Канаде (у оз. Онтарио). Рудные тела в виде крупных залежей и жил располагаются в низах магматического массива, сложенного основными породами (норитами, габбро и др.), а также в подстилающих породах метаморфического комплекса. Эти руды содержат 1–5 % Ni, 2–3 % Cu и платиновые металлы.

Практическое значение. Пентландитсодержащие руды являются главным источником выплавляемого никеля. Около 90 % мировой продукции никеля извлекается из медно-никелевых сульфидных руд. Кроме никеля из этих руд извлекаются также кобальт, медь, серебро, металлы платиновой группы и в небольших количествах селен и теллур.

Никель применяется для изготовления специальных инструментов, посуды, как составная часть многих важных в техническом отношении сплавов (нейзильбер, никелевая сталь, сплавы с медью и цинком для реостатов, монет и др.), для получения соединений, применяемых для никелирования, и т. д.

5. Группа халькопирита

В этой группе опишем сложные сульфиды Сu, Fe и Sn — халькопирит и станнин, кристаллизующиеся в тетрагональной сингонии. По кристаллической структуре они близки к сфалериту, но по физическим свойствам сильно отличаются от него. В сфалерите они иногда встречаются в виде мельчайших включений как продукты распада ограниченного твердого раствора, что может быть объяснено именно близостью кристаллических структур, особенно при высоких температурах. Сфалерит, в свою очередь, в виде продуктов распада твердых растворов наблюдается также в станнине.

Здесь же опишем еще один сложный сульфид меди и железа — борнит, по ряду свойств близкий к халькопириту, с которым он способен образовывать широкие изоморфные смеси, распадающиеся при охлаждении, а также кубанит.

ХАЛЬКОПИРИТ — CuFeS2. Название образовано от греч. халькос — медь, пирос — огонь. Синоним: медный колчедан.

Химический состав. Сu — 34,57 %, Fe — 30,54 %, S — 34,9 %. Данные химических анализов обычно очень близки к этим цифрам. В качестве примесей в ничтожных количествах иногда присутствуют Ag, Аu и др.

Сингония тетрагональная; тетрагонально-скаленоэдрический в. с. L242L22P. Пр. гр. I42d(D122d). а0 = 5,24; с0 = 10,30. а : с = 1 : 1,9705.

Кристаллическая структура характеризуется сравнительно простой тетрагональной решеткой (рис. 103), производной от кубической гранецентрированной. Элементарная ячейка халькопирита состоит как бы из удвоенной по высоте ячейки типа сфалерита (ср. с рис. 94). Так же как и в сфалерите, каждый ион серы окружен четырьмя металлическими ионами в углах тетраэдра — меди и железа, располагающимися в каждом слое в определенном порядке. В первом и пятом катионных слоях, т. е. на верх­ней и нижней гранях тетрагональной призмы (рис. 103а), по углам квадрата располагаются ионы Fe, а в середине — Сu. В третьем слое (в середине призмы), наоборот, по углам квадрата ионы Cu, а в середине его — Fe. Во втором и четвертом слоях два иона Сu перекрещиваются с двумя ионами Fe, причем под катионами Сu второго слоя располагаются катионы Fe, и наоборот. Все тетраэдрические группировки ориентированы одинаково (рис. 103б), чем и обусловливается гемиэдрия кристаллов. В отличие от сфалерита халькопирит обладает непрозрачностью, явным металлическим блеском и отсутствием совершенной спайности.

Рис. 103. Кристаллическая структура халькопирита.
а — расположение центров атомов меди, железа и серы;
б — та же структура, изображенная в виде тетраэдров

Облик кристаллов. Кристаллы редки и встречаются только в друзовых пустотах. Чаще всего они имеют псевдооктаэдрический с комбинациями {112} и {11} или тетраэдрический облик (рис. 104), реже скаленоэдрический и др. Грани основного тетраэдра матовые или покрыты штрихами, а отрицательного — гладкие. Двойники часты по (112), реже (102) и другим законам. Агрегаты. Обычно встречается в сплошных массах и в виде неправильной формы вкрапленных зерен. Известны также колломорфные образования в почковидных и гроздевидных формах.

Рис. 104. Тетраэдрический кристалл
и двойник халькопирита: p {112}, z {011}, c {001}

Цвет халькопирита латунно-желтый, часто с темно-желтой или пестрой побежалостью. Черта черная с зеленоватым оттенком, местами металлически блестящая. Непрозрачен. Блеск сильный металлический.

Твердость 3–3,5. Довольно хрупок. Спайность несовершенная по {101}. Уд. вес 4,1–4,3.

Диагностические признаки. Довольно легко узнается по характерному цвету, твердости, резко отличающейся от пирита, который в изломе часто бывает покрыт побежалостью, похожей на цвет халькопирита. Миллерит в неправильной формы зернах также бывает похож на халькопирит, но обладает более сильным блеском и богат никелем.

П. п. тр., растрескиваясь, сплавляется в магнитный шарик. С содой на угле дает королек меди. В закрытой трубке обнаруживает возгон серы. В HNО3 постепенно разлагается с выделением серы.

Происхождение и месторождения. В природе халькопирит может образовываться в различных условиях.

Как спутник пирротина он часто встречается в магматогенных месторождениях медно-никелевых сульфидных руд в основных изверженных породах в ассоциации с пентландитом, магнетитом, иногда кубанитом и др.

Наиболее широко развит в типичных гидротермальных жильных и метасоматических (в том числе контактово-метасоматических) месторождениях. Он обычно ассоциирует с пиритом, пирротином, сфалеритом, галенитом, блеклыми рудами и многими другими минералами. Из нерудных минералов в этих месторождениях встречаются кварц, кальцит, барит, различные по составу силикаты и др.

При экзогенных процессах халькопирит образуется очень редко среди осадочных пород в условиях сероводородного брожения при разложении органических остатков и притоке меденосных растворов. Наблюдались явления замещения им древесины и организмов (наряду с халькозином и марказитом).

В процессе выветривания халькопирит, разрушаясь химически, дает сульфаты меди и железа. Растворимый сульфат меди при взаимодействии с CO2 или с карбонатами в присутствии кислорода и воды образует малахит и азурит; гидрозолями SiO2 — хризоколлу; при взаимодействии с различными кислотами, образующимися в зоне выветривания, — разнообразные соли: арсенаты, фосфаты, ванадаты, иногда хлориды и др. В условиях очень сухого климата в зоне окисления сохраняются также различные сульфаты меди, легко растворимые в просачивающихся поверхностных водах.

Псевдоморфозы по халькопириту, т. е. замещение его вторичными сульфидами меди — борнитом, халькозином и ковеллином, широко распространены в зонах вторичного сульфидного обогащения медных месторождений.

Халькопирит в качестве спутника в тех или иных количествах встречается почти во всех гидротермальных месторождениях самых различных сульфидных руд. В рудах многих месторождений он является существенной составной частью и имеет самостоятельное промышленное значение. На территории России и ближнего зарубежья мы имеем представителей всех генетических типов месторождений, в которых халькопирит является главным минералом меди.

На Урале широко распространены так называемые колчеданные залежи, приуроченные к толщам большей частью метаморфизованных эффузивно-осадочных пород палеозойского возраста. Главным минералом (до 60–80 %) в рудах этих месторождений является пирит, с которым парагенетически связан халькопирит. К этому типу относится большая часть уральских месторождений. В некоторых залежах халькопирит тесно ассоциирует со сфалеритом. Таковы месторождения Карпушинское, Сибайское, Левихинские и др. Аналогичные по составу месторождения известны и в Закавказье.

К типу контактово-метасоматических месторождений в известняках относится группа Турьинских месторождений на Северном Урале и ряд месторождений Минусинского района на восточном склоне Кузнецкого Алатау (Хакасия). Парагенетически халькопирит здесь обычно связан с пиритом, иногда с пирротином, магнетитом и другими минералами.

Интересный тип месторождений представляют собой крупные по размерам Удоканское (Забайкалье) и Джезказганское (в западной части Центрального Казахстана) месторождения. Здесь халькопирит совместно с борнитом и халькозином образует цемент в тонкозернистых песчаниках. Считали, что эти минералы образовались из гидротермальных растворов путем замещения известковистого цемента между песчинками кварца, однако результаты исследований последних лет приводят к предположению о первоначально осадочном их происхождении.

Из иностранных месторождений отметим лишь некоторые: Бингхэм в штате Юта (США), Чукикамата (Чили), медистые песчаники в Шабе (бывш. Катанга, Демократическая Республика Конго) и к югу от нее — в Северной Родезии.

Практическое значение. Халькопиритсодержащие руды являются одним из главных источников меди. Промышленное содержание ее в таких рудах обычно колеблется в пределах 2–2,5 %.

Получаемая на металлургических заводах медь употребляется как в чистом виде, так и в виде сплавов (латуни, бронзы, томпака и др.). Главным потребителем меди является электропромышленность. Значительное количество ее расходуется в машиностроении, судостроении, изготовлении аппаратуры для химической промышленности, жилищном строительстве и т. д.

СТАННИН — Cu2FeSnS4. Синоним: оловянный колчедан.

Химический состав. Сu — 29,5 %, Fe — 13,1 %, Sn — 27,5 %, S — 29,9 %. Содержание по анализам: Sn — 22–27,7 %, Сu — 22,9–31,5 %, Fe — 4,7–23,3 %. Кроме того, присутствуют примеси Zn — 0,75–10,1 %, Sb — до 3 %, Cd — до 1,5 %, Pb — до 2 % и Ag — до 1 %.

Сингония тетрагональная; тетрагонально-скаленоэдрический в. с. L24L22P. Пр. гр. I42d(D122d). а0 = 5,46; с0 = 10,725. а : с = 1 : 1,966. Редко встречающиеся мелкие кристаллы имеют кубический или тетраэдрический облик. По внешнему виду они очень близко напоминают кристаллы халькопирита. Обычно станнин наблюдается в виде неправильных зерен и сплошных масс. Кристаллическая структура аналогична структуре халькопирита (см. рис. 103), но в расположении катионов намечается следующий порядок: в первом и пятом слоях по вершинам квадрата ионы Sn, в центре — Fe; в срединном слое, наоборот, по вершинам ионы Fe, а в центре — Sn; четные слои (второй и четвертый) сложены ионами Cu. По расположению ионов кристаллическое строение станнина, как и халькопирита, следовательно, близкородственно кристаллической структуре сфалерита.

Цвет станнина стально-серый с характерным оливково-зеленоватым оттенком (в свежем изломе). В случае обильных микроскопических включений халькопирита приобретает явно желтоватый оттенок. Черта черная. Непрозрачен. Блеск в свежем изломе металлический, но быстро тускнеет.

Твердость 3–4. Хрупок. Спайность несовершенная по {110} и {001}, наблюдается редко. Уд. вес 4,3–4,5.

Диагностические признаки. Типичным является цвет с характерным оливково-зеленоватым оттенком, по которому он сравнительно легко отличается на глаз от блеклых руд, похожих на него по ряду признаков (твердости, хрупкости и др.).

П. п. тр. на угле плавится, белея с поверхности и образуя около самой пробы белый налет SnO2. Медь, железо и сера устанавливаются в нем химическими реакциями. В HNO3 разлагается, выделяя серу и двуокись олова; раствор его приобретает синий цвет.

Происхождение и месторождения. Является сравнительно малораспространенным минералом и встречается в гидротермальных оловорудных месторождениях.

В вольфрамо-оловянных месторождениях он наблюдается в ассоциации с касситеритом (SnO2), халькопиритом, арсенопиритом, вольфрамитом и другими минералами.

Гораздо чаще встречается в сфалерито-галенитовых и сфалерито-пирротиновых оловосодержащих рудах. В этих рудах парагенетически с ним очень тесно связаны сфалерит и халькопирит, а иногда пирротин, галенит и др. В ряде случаев устанавливаются явления замещения его касситеритом (SnO2) и наоборот.

В зоне окисления легко разлагается с образованием в конечном счете лимонита и касситерита. Однако главная масса олова при этом переходит, по-видимому, в коллоидальный раствор, который впоследствии коагулирует и дает в результате землистые, губчатые или колломорфные стяжения касситерита.

На территории России станнин в очень незначительных количествах встречен во многих оловянно-вольфрамовых месторождениях, например в Букуке (Забайкалье), в ассоциации чаще всего с халькопиритом, в парагенезисе с касситеритом и сфалеритом в зернах размером до 1 см. Заметную роль играет в рудах олово-вольфрамового месторождения Тигриное (Приморье), где присутствует в кварцевых жилах с касситеритом, вольфрамитом, арсенопиритом и сфалеритом. Отмечается его присутствие и в свинцово-цинковых месторождениях, таких как Синанча (ныне Черемшаны) в Приморье.

Из иностранных — встречен в месторождении Циновец (бывш. Циннвальд в Рудных горах, Чехия), в значительных количествах в Южном Китае, в Цихане (о. Тасмания) и особенно во многих месторождениях Боливии (Ахота, Потози и др.).

Практическое значение. В большинстве случаев станнин встречается в незначительных количествах и потому не имеет такого важного промышленного значения, как касситерит.

БОРНИТ — Cu5FeS4. Синоним: пестрая медная руда. В природных условиях образует ограниченные твердые растворы с халькопиритом, распадающиеся при понижении температуры. Этот процесс распада изучен экспериментальным путем.

Химический состав непостоянен. Теоретически, согласно химической формуле Cu5FeS4, он должен быть следующим: Сu — 63,3 %, Fe — 11,2 %, S — 25,5 %. Однако состав борнита колеблется в значительных пределах, так как этот минерал способен содержать в себе в виде твердых растворов халькопирит и халькозин. Из других химических примесей часто наблюдается Ag.

Сингония кубическая; гексаоктаэдрический в. с. 3L44L36L29PC. Пр. гр. Fd3m(О7h). a0 = 10,93. Кристаллы встречаются исключительно редко. Обычно наблюдается в сплошных массах и в виде вкраплений. Кристалличе­ская структура борнита представляет собой усложненную кубическую плотноупакованную структуру с заполнением тетраэдрических пустот. При понижении температуры проходит ряд полиморфных превращений через ромбоэдрическую к моноклинной модификации, при этом атомы металла упорядочиваются, а анионная упаковка искажается. Согласно рентгенометрическим данным, в кристаллической структуре борнита два сорта ионов меди занимают разные положения и химическая формула его, вероятно, имеет следующий вид: 2Сu2S . CuFеS4 = (Сu4СuFеS4), т. е. четыре­ иона меди одновалентны, а пятый ион и ион железа двухвалентны.

Цвет борнита в свежем изломе темный медно-красный до оранжевого; обычно покрывается яркой пестрой (преимущественно синей) побежалостью. Черта серовато-черная. Непрозрачен. Блеск металлический до полуметаллического.

Твердость 3. Сравнительно хрупок, но несколько более пластичен, чем халькопирит. Спайность практически отсутствует. Уд. вес 4,9–5. Прочие свойства. Обладает электропроводностью.

Диагностические признаки. Легко узнается по цвету и пестрой синей побежалости, низкой твердости. По ярко-синим побежалостям можно ошибочно принять за ковеллин (при царапании ножом можно убедиться в истинном цвете минерала).

П. п. тр. сплавляется в магнитный шарик, а с содой на угле дает королек меди. В HNO3 разлагается с выделением всплывающей серы.

Происхождение и месторождения. Встречающийся в природе борнит имеет как эндогенное, так и экзогенное происхождение.

Борнит эндогенного происхождения встречается в некоторых гидротермальных месторождениях. В ряде случаев он содержит микроскопические, обычно пластинчатые включения халькопирита, являющиеся продуктом распада твердого раствора. В парагенезисе с ним, кроме халькопирита, встречаются: эндогенный халькозин, галенит, сфалерит, пирит и др.

Экзогенный борнит широко бывает развит в зонах вторичного сульфидного обогащения. Как наиболее ранний вторичный сульфид, он образуется метасоматическим путем, главным образом за счет халькопирита, в виде неправильных жилок, каемок или сплошных масс. Наблюдается во многих медносульфидных месторождениях, однако в значительных массах встречается редко. По сравнению с другими вторичными сульфидами меди является менее устойчивым, замещаясь более богатыми медью халькозином и ковеллином. При разложении в зоне окисления по борниту образуются кислородные соединения: малахит, азурит, реже куприт и др.

На территории России эндогенный борнит в ассоциации с эндогенным халькозином встречался в ряде колчеданных залежей Южного Урала: им. III Интернационала, Дзержинское месторождение (Карабашская группа) и др.

Широко распространен также в парагенезисе с халькопиритом в Удоканском месторождении (Забайкалье) и в Джезказганском меднорудном районе (Центральный Казахстан), в так называемых медистых песчаниках (о происхождении см. халькопирит).

Экзогенный борнит в значительных количествах встречается в зонах вторичного сульфидного обогащения почти во всех медносульфидных месторождениях, особенно если выветривание происходит в условиях умеренного климата.

Практическое значение. Так как борнит по сравнению с халькопиритом является значительно более богатым медью минералом, то даже вкрапленные борнитовые руды при наличии крупных запасов могут представлять несомненный промышленный интерес.

КУБАНИТ — CuFe2S3. Ромбич. с. Химический состав. Сu — 22–24 %, Fe — 40–42 %, S — 34–35 %. Цвет очень похож на цвет пирротина, а иногда и халькопирита — бронзово-желтый. Блеск металлический. Твердость 3,5. Спайность отсутствует. Уд. вес 4,03–4,18. Сильно магнитен.

Парагенетически тесно связан с халькопиритом. Часто наблюдается в последнем в виде пластинчатых выделений, устанавливаемых под микроскопом и представляющих собой продукт распада твердых растворов. Впервые был встречен в золоторудных кварцевых жилах Морро-Вело в Минас-Жераис (Бразилия). В России известен в Норильских медно-никелевых сульфидных залежах, а также в магнетит-везувиан-диопсидовых скарнах Люппико (Северное Приладожье).

6. Группа ковеллина

Сюда относятся простые по эмпирической химической формуле соединения, но обладающие сложным кристаллическим строением, согласно которому в составе минералов принимают участие два сорта ионов одного и того же элемента (как среди катионов, так и среди анионов). В связи с этим и химическая формула имеет более сложный вид. Здесь мы рассмотрим лишь один минерал — ковеллин.

КОВЕЛЛИН — CuS, или Cu21+S . Cu2+S2. Назван по фамилии итальян­ского минералога Ковелли. Синоним: медное индиго.

Химический состав. Сu — 66,5 %, S — 33,5 %. Химическими анализами устанавливаются примеси Fe, реже Se, Ag и Pb.

Сингония гексагональная; дигексагонально-дипирамидальный в. с. L66L27PC. Пр. гр. P63/mmc(D46h). a0 = 3,80; с0 = 16,32. Кристаллы встречаются чрезвычайно редко и имеют вид мелких тонких табличек. Кристаллическая структура. Ковеллин обладает оригинальной слоистой гексагональной структурой (рис. 105). Структура, согласно результатам рентгеноструктурных исследований, оказалась гораздо более сложной, чем это можно было ожидать на основании прежней химической формулы — CuS. Характерно, что устанавливаются два вида ионов серы: единичные ионы S2– и спаренные ионы [S2]2–. Эти комплексные ионы, состоящие из двух плотно примыкающих друг к другу ионов, подобно тому, как это имеет место в кристаллической структуре пирита, с тем же расстоянием S—S, равным 2,05 Ао (см. ниже рис. 115). Ионы меди тоже двух сортов: Cu1+ и меньших размеров Cu2+. Каждый двухвалентный ион меди окружается тремя единичными ионами S2- в виде равностороннего треугольника. Триады, соединенные друг с другом через вершины, слагают слои (черные на рис. 105) в кристаллической структуре ковеллина, ориентированные перпендикулярно к шестерной оси. Между такими слоями располагаются два слоя тетраэдров с одновалентными ионами Сu1+ в центре. При этом основания этих тетраэдров, обращенные друг к другу, соединены вертикально ориентированными спаренными ионами [S2]2– (в середине, вверху и внизу рис. 105 они показаны в виде полых укороченных треугольных призм), а противостоящие им вершинки тетраэдров заняты единичными ионами S2–, которые являются общими как для слоя треугольника, так и для вершинок следующего за ними слоя тетраэдров. Таким образом, в структуре ковеллина имеется сочетание структурных элементов обеих модификаций углерода (алмаза и графита). Если мы подсчитаем ионный состав такой кристалличе­ской структуры, то увидим, что формулу ковеллина правильнее писать так: Cu21+S . Cu2+S2. C этими особенностями структуры прекрасно увязываются форма, спайность, необычные оптические свойства минерала, способность давать возгон части серы при нагревании и др.

Рис. 105. Кристаллическая структура ковеллина в полиэдрах (по Н. В. Белову).
Тетраэдры — координированные серой ионы Cu+, треугольники — Cu2+,
вертикальные ребра пустых тригональных призм — гантели [S2]2–

Агрегаты. Редко встречющиеся кристаллы имеют вид гексагональных пластинок. Обычно ковеллин наблюдается в виде тонких примазок ярко-синего цвета или синевато-черных порошковатых или сажистых масс.

Цвет ковеллина индигово-синий. Черта серая до черной. Непрозрачен. В тончайших листочках просвечивает зеленым цветом. Блеск металлический. Твердость 1,5–2. Хрупок. В тонких пластинках несколько гибок. Спайность совершенная по {0001}. Уд. вес 4,59–4,67.

Диагностические признаки. Легко узнается по ярко-синему цвету, низкой твердости и ассоциации с сульфидами меди.

П. п. тр. легко плавится, загораясь голубым пламенем и выделяя SO2. В отличие от халькозина в запаянной трубке дает возгон серы. В горячей HNO3 растворяется с выделением серы.

Происхождение и месторождения. Ковеллин, обычно в очень небольших количествах, является одним из характернейших экзогенных минералов зоны вторичного сульфидного обогащения в меднорудных месторождениях. Как правило, развивается метасоматическим путем на месте первичных и вторичных сульфидов меди: халькопирита, борнита, халькозина и др. Помимо образования метасоматическим путем, известны случаи самостоятельного его отложения вдоль трещин в виде колломорфных образований или землистых масс.

Ковеллин гидротермального происхождения в парагенезисе с пиритом крайне редок и встречается в небольших количествах в Бьютт в Монтане (США) и в других местах.

Как продукт деятельности фумарол наблюдался в лавах Везувия, где и был впервые описан ковеллин, а также в кальдере Узона (Камчатка).

Самостоятельных месторождений не образует. В ничтожных или небольших количествах встречается буквально во всех месторождениях медносульфидных руд (в зонах вторичного сульфидного обогащения). В больших массах был встречен на о. Кавау (близ Новой Зеландии).

Практическое значение. Ковеллино-халькозиновые руды принадлежат к числу богатых медных руд. По сравнению с первичными халькопиритовыми рудами они при одной и той же степени вкрапленности дают вдвое более высокое содержание меди.

7. Группа аурипигмента

В этой группе рассмотрим сульфид трехвалентного мышьяка — аурипигмент, а также реальгар, имеющий ряд общих свойств с предыдущим минералом.

АУРИПИГМЕНТ — As2S3. Название происходит от лат. aurum — золото и pigmentum — краска. Предполагалось, что минерал содержит золото.

Химический состав. As — 61 %, S — 39 %. Обычно устанавливаются лишь механические примеси: Sb2S3, FeS2 (марказит), SiO2, глинистое вещество и др. Лишь Se, Sb, V (до 0,02 %), Ge (до 4·10–6 %) могут рассматриваться как изоморфные примеси.

Сингония моноклинная; ромбо-призматический в. с. L2PC. Пр. гр. Р21/п (C52h). a0 = 11,46; b0 = 9,59; с0 = 4,24; β = 90°27. Рентгенометрические исследования показали, что некоторые образцы аурипигмента содержат значительные количества самородной серы в виде механической примеси. Кристаллическая структура молекулярная слоистая; гофрированные слои, состоящие из As2S3, слабо связаны между собой вандерваальсов­скими силами, чем и обусловлены весьма совершенная спайность по {010}, низкая твердость, высокая оптическая анизотропия, легкоплавкость и др. Облик кристаллов. Встречающиеся кристаллы аурипигмента имеют обычно призматический облик (рис. 106), нередко с искривленными гранями. Наиболее часто наблюдаются следующие формы: пинакоиды {100} и {010}, призмы {110}, {301}, {210} и др. Агрегаты. Нередко характерны шестоватые, гребенчатые агрегаты, а также гроздевидные, почкообразные и шарообразные массы с радиально-лучистым строением (рис. 107).

Рис. 106. Кристалл аурипигмента:
o {301}, U {210}, m {110}, x {11}, ν {21}, β {.9.4}, v { 31}

Рис. 107. Сферолиты аурипигмента с баритом на доломите.
Рудник Эльбрусский (КарачаевоЧеркесия).
Рисунок В. Слетова и В. Макаренко
из III выпуска альбома «Рисуя минералы...» (рис. 22)

Цвет аурипигмента лимонно-желтый, иногда с буроватым оттенком; скрытокристаллические массы с тонкодисперсной примесью FeS2 обладают грязно-желтой окраской с зеленоватым оттенком. Черта того же цвета, но более ярких оттенков. Просвечивает; в спайных листочках прозрачен. Блеск в зависимости от направления меняется от алмазного до полуметаллического в полном соответствии с показателями преломления: Ng = 3,0, Nm = 2,8 и Np = 2,4.

Твердость 1–2. При царапании издает характерный скрип. В тонких листочках гибок, но не обладает упругостью. Спайность весьма совершенная по {010} и несовершенная по {100}. Уд. вес 3,4–3,5. Прочие свойства. Электричества не проводит. Электризуется при разрывах листочков по спайности.

Диагностические признаки. Легко узнается по яркому лимонно-желтому цвету, низкой твердости, весьма совершенной спайности и сильному алмазному или полуметаллическому блеску в изломе. При изгибании листочков издает характерный скрип. В порошковатых массах по внешнему виду можно смещать с порошковатой самородной серой, а также некоторыми уранофосфатами и уранованадатами (отэнит, тюямунит и др.), от которых он отличается по поведению п. п. тр., оптическим свойствам и отсутствию радиоактивности.

П. п. тр. на угле очень легко плавится с кипением и улетучивается, оставляя белый налет As2O3 и издавая резкий чесночный запах мышьяка. В HNO3 и в царской водке растворяется, выделяя всплывающую серу. Легко растворим без остатка в КОН.

Происхождение и месторождения. Встречается в гидротермальных месторождениях в ассоциации с минералами, образующимися при сравнительно низких температурах с реальгаром, антимонитом, марказитом, пиритом, а также с кварцем, кальцитом, гипсом и др. В известном минеральном источнике Стимбот в Неваде (США) отлагается из горючих вод вместе с реальгаром, опалом, арагонитом и др.

В очень небольших количествах он наблюдался на стенках кратеров вулканов и в пустотах пористых лав как продукт возгона вместе с самородной серой, хлоридами и другими минералами.

Как экзогенный минерал в виде налетов и землистых образований в ничтожных количествах изредка встречается в месторождениях каменных углей и бурых железняков, образуясь, вероятно, под действием на мышьяковистые растворы сероводорода как продукта разложения организмов.

В существенных количествах, как мышьяковая руда, аурипигмент встречается вместе с реальгаром. Крупные монокристальные выделения до полуметра в длину были известны из месторождения Мен-Кюле (Восточная Якутия). Сферолитовые корки и щетки кристаллов аурипигмента с баритом и реальгаром (см. рис. 107) в полостях поздних доломитовых жил характерны для свинцово-цинкового месторождения Эльбрусское (Карачаево-Черкесия).

Руды Лухумского месторождения (Горная Рача, Грузия) отличаются замечательной расцветкой штуфов, сложенных кристаллическими массами ярко-желтого аурипигмента, красного реальгара и молочно-белого кварца и кальцита. В пустотах часто встречаются друзы хорошо образованных кристаллов размерами по длине от 0,5 до 5 см. Наблюдались также крупные почковидные массы сплошного аурипигмента с радиально-лучистым строением в изломе. Совсем другой вид имеют аурипигментовые руды сравнительно молодого по возрасту Джульфинского месторождения (к северу от г. Джульфа, Азербайджан) среди палеогеновых, сложенных в складки мергелей и глинистых пород. Аурипигмент здесь наблюдался в виде скрытокристаллических масс с восковым блеском в изломе и зеленовато-желтой окраской (от примеси тонкодисперсных дисульфидов железа). При разработке рудного тела наблюдалось обильное выделение газов: СО2, H3As и H2S. Возле месторождения до сих пор действуют минеральные источники, содержащие Са(НСО3)2, Na2SO4, CaHAsO4, Br, Li и др.

Из других иностранных месторождений отметим Алшар (в Македонии), где встречались крупные кристаллы аурипигмента; месторождения США — Меркур в штате Юта и др.

Практическое значение. В случае наличия крупных по запасам скоплений представляет собой сырье для получения трехокиси мышьяка, а также используется в красильном деле и других производствах.

РЕАЛЬГАР — As4S4. Химический состав. As — 70,1 %; S — 29,9 %. Данные химических анализов почти отвечают теоретическим. Изоморфные примеси других элементов не устанавливаются.

Сингония моноклинная; ромбо-призматиче­ский в. с. L2PC. Пр. гр. P21/n (C52h). а0 = 9,27; b0 = 13,50; с0 = 6,56; β = 106° 33. Кристаллическая структура довольно сложная; построена из отдельных молекул As4S4. Ионы серы образуют квадрат, а мышьяка — тетраэдр. Центры квадрата и тетраэдра совпадают. Облик кристаллов. Кристаллы обычно имеют призматический вид (рис. 108); они укорочены или вытянуты по вертикальной оси, параллельно которой на гранях наблюдается тонкая штриховка. Наиболее обычны следующие комбинации форм: пинакоиды {001}, {010} и ромбические призмы {110}, {120}, {011} и др. Агрегаты. Наблюдается также в виде сплошных зернистых агрегатов, иногда налетов, корок или землистых рыхлых масс.

Рис. 108. Кристалл реальгара. Лухумское месторождение
(по И. И. Шафрановскому): m {110}, l {120}, b {010}, n {011}, x {01}, r {11}

Цвет реальгара оранжево-красный, реже темно-красный. Полупрозрачен. Черта светло-оранжевая. Блеск на гранях кристаллов алмазный, в изломе смоляной или жирный. Показатели преломления в Li-свете: Ng = 2,61, Nm = 2,59 и Np = 2,46.

Твердость 1,5–2. Спайность довольно совершенная по {010} и {120}. Уд. вес 3,4–3,6. Прочие свойства. От действия света с течением времени превращается в порошок светло-оранжевого цвета. Под влиянием электрического света кристаллы его растрескиваются и превращаются в такой же порошок, причем рентгенометрическими исследованиями установлено, что это явление сопровождается распадом кристаллической структуры. Электричества не проводит.

Диагностические признаки. Для реальгара характерны оранжево-красный цвет, низкая твердость, штриховатость граней вдоль оси вытянутости кристаллов. Характерен также парагенезис с легко устанавливаемым по внешним признакам аурипигментом. От похожего на него крокоита (Pb[CrO4]) отличается более низкой твердостью, обликом кристаллов и поведением п. п. тр. (на угле с содой крокоит дает королек свинца). Киноварь от реальгара отличается ярко-красной чертой, высоким удельным весом и поведением п. п. тр.

П. п. тр. легко плавится и улетучивается, выделяя характерный чесночный запах мышьяка. Растворяясь в царской водке, выделяет серу. В отличие от киновари растворяется в нагретой KOH, причем прибавление к раствору HCl вызывает появление лимонно-желтого хлопьевидного осадка.

Происхождение и месторождения. В природе встречается в совершенно аналогичных условиях с аурипигментом, с которым парагенетически постоянно связан (см. аурипигмент). На самой поверхности никогда не встречается, так как под действием света разрушается и частично превращается в аурипигмент.

В России отмечены проявления реальгара в бассейне р. Шренк на Таймыре, в Эльбрусском руднике (Северный Кавказ) и в Сарасинском месторождении (Алтай). Исключительно крупные (1–2 см) кристаллы (см. рис. 108) и красивые друзы реальгара встречались в Лухумском месторождении (Рачинский хребет на южном склоне Кавказа, Западная Грузия) в ассоциации с аурипигментом, изредка антимонитом, пиритом, марказитом, мельниковитом, кварцем, кальцитом и др.

В качестве спутника встречается почти во всех месторождениях аурипигмента.

Практическое значение. Относится к числу малораспространенных минералов. Очень редко совместно с аурипигментом образует чисто мышьяковые месторождения (Лухумское). В этих случаях он представляет практический интерес как сырье для получения As2O3 (путем обжига). Сернистый мышьяк (AsS), как естественный, так и искусственный, имеет применение в красильном деле, пиротехнике, стекольном производстве и других отраслях.

8. Группа антимонита

Относящиеся сюда сульфиды трехвалентных сурьмы и висмута — антимонит и висмутин — существенно отличаются от аурипигмента по кристаллической структуре и физическим свойствам (непрозрачности, металлическому блеску и др.). Это обстоятельство, очевидно, связано с увеличением металлических свойств катионов Sb3+ и Bi3+.

АНТИМОНИТ — Sb2S3. Название происходит от латинского слова антимониум — сурьма. Синонимы: стибнит, сурьмяный блеск.

Химический состав. Sb — 71,4 %, S — 28,6 %. Из примесей иногда устанавливаются As, Ag и Аu. Последние два элемента присутствуют, по-видимому, в виде механически включенных соединений. Самородное золото неоднократно устанавливалось в массе антимонита в полированных шлифах под микроскопом.

Сингония ромбическая; ромбо-дипирамидальный в. с. 3L23PC. Пр. гр. Рbпт (D162h). a0 = 11,20; b0 = 11,28, с0 = 3,83. Кристаллическая структура представлена вытянутыми параллельно оси с лентами тесно связанных ионов Sb и S, состоящими из зигзагообразных цепочек — Sb—S—Sb—S—. В окружении сурьмы участвуют пять анионов серы, так что координационный многогранник оказывается полуоктаэдром, место шестого атома октаэдра занимает неподеленная электронная пара неполновалентной сурьмы. Полуоктаэдры связаны через общие ребра квадратных оснований в слои и обращены вершинами к середине ленты, где два слоя сходятся и, соединяясь через наклонные ребра, образуют один слой, представленный в лентах. Из внешней поверхности лент в межленточное пространство выступают неподеленные электронные пары, поэтому связи между отдельными лентами более слабые, чем между ионами внутри лент. Все это, естественно, сказывается не только на форме кристаллов, но и на таких свойствах, как спайность, твердость, хрупкость и легкоплавкость.

Облик кристаллов. Обычно призматические (рис. 109), столбчатые, игольчатые, обладающие вертикальной штриховкой. Нередко, особенно для крупных экземпляров, наблюдается искривление и даже скручивание их. Из многочисленных установленных граней наиболее характерны следующие комбинации: призмы {110}, пинакоида {010} и пирамид {111}, {113}, {121} и др. (рис. 110). Агрегаты. Встречается также в виде сплошных зернистых, часто радиально-лучистых, реже спутанно-волокнистых агрегатов и в виде вкрапленных зерен в кварцевой массе. Известны и чугуноподобные сплошные мелкозернистые агрегаты.

Рис. 109. Кристаллы антимонита c кварцем. Кадамджай (Киргизия).
Рисунок В. Слетова и В. Макаренко из I выпуска альбома
«Рисуя минералы…» (рис. 13)

Рис. 110. Кристаллы антимонита:
m {110}, b {010}, s {111}, p {331}, v {121}

Цвет и черта антимонита свинцово-серые. На кристаллах нередко наблюдается темная синеватая побежалость. Непрозрачен. Блеск металлический, сильный на плоскостях спайности.

Твердость 2–2,5. Хрупок. Спайность совершенная по {010} и несовершенная по {110}. Уд. вес 4,6. Прочие свойства. Электричество не проводит.

Диагностические признаки. В агрегатах по цвету и механическим свойствам похож на многие сульфоантимониты (буланжерит, джемсонит и др.) и особенно на висмутин. Характерными отличительными особенностями его являются: совершенная спайность вдоль вытянутости шестоватых индивидов и поперечная двойниковая штриховатость в плоскостях скола. В тонкозернистых и скрытокристаллических массах, а также в мелких вкраплениях от всех похожих на него минералов безошибочно определяется по реакции с КОН. Капелька этого реактива, положенная на минерал, энергично разлагает его и вскоре становится желтой, затем оранжевой; после стирания капли остается красное пятно.

П. п. тр. на угле очень легко плавится, выделяя SO2 и оставляя белый налет Sb2O3, который в восстановительном пламени улетучивается, окрашивая его в зеленый цвет. В HNO3 растворяется с выделением Sb2O5.

Происхождение и месторождения. В главной массе антимонит встречается в гидротермальных месторождениях, образуясь при наиболее низких температурах и слагая вместе с кварцем самостоятельные жилы и пластообразные залежи. В ассоциации с ним нередко встречаются киноварь, флюорит, кварц, кальцит, каолинит, барит, иногда пирит и золото. В качестве спутника почти постоянно наблюдается в месторождениях киновари, реальгара и аурипигмента, изредка — в месторождениях свинца, цинка и других металлов.

В ничтожных количествах он иногда наблюдается в продуктах возгона при вулканических извержениях. В зоне окисления сравнительно легко разлагается, переходя в различные окислы сурьмы желтого, иногда бурого цвета (валентинит, сервантит, сенармонтит, кермезит и др.).

На территории России к числу наиболее известных месторождений принадлежат: Раздольнинское (в Красноярском крае), представленное сложными кварцево-антимонитовыми жилами в докембрийских сланцах, и Сарылахское в бассейне Индигирки (Якутия), где антимонит проявлен в виде тонкозернистых плотных агрегатов (так называемый чугунный антимонит). Представляют интерес полиметаллические гидротермальные кварцевые жилы с киноварь-антимонит-ферберитовой минерализацией, к этому типу относятся руды Барун-Шивеинского месторождения (Забайкалье).

Отмечен антимонит с киноварью, кварцем и диккитом в Никитов­ском ртутном месторождении (Украина). В Средней Азии известны крупные месторождения Джижикрут (Таджикистан) в виде мощных и обильных кальцит-антимонитовых жил в алевролитах и Кадамджай (Киргизия) в виде пластообразной залежи в «кремнистой брекчии», где с антимонитом (см. рис. 109), кроме кварца и кальцита, в небольших количествах ассоциируют пирит, марказит, флюорит, барит.

Из иностранных большой известностью пользуется месторождение Итинокава на о. Шикоку (Япония), где встречались кристаллы антимонита необыкновенно больших размеров: до 0,5 м в длину при толщине до 5 см. Крупнейшие месторождения в виде кварцевых жил и штокообразных залежей в известняках известны в Китае (провинция Юньнань и др.), где сосредоточена главная мировая добыча этих руд.

Практическое значение. Антимонитовые руды являются главнейшим источником сурьмы, имеющей разнообразное применение. Преимущественно она идет на изготовление сплавов, обладающих антифрикционными свойствами (баббитов для подшипников). Сплавы со свинцом и цинком идут на изготовление так называемого типографского металла, твердой дроби, частей насосов, кранов и др. Соединения сурьмы применяются также в резиновой промышленности (с целью вулканизации резины), текстильном производстве (для пропитки тканей), стекольном деле, медицине и в ряде других производств.

ВИСМУТИН — Bi2S3. Синонимы: бисмутинит, висмутовый блеск.

Химический состав. Bi — 81,3 %, S — 18,7 %. Нередки примеси в небольших количествах Pb, Cu, Fe, As, Sb, Те и др. Из них Pb, Sb и Те могут изоморфно замещать висмут.

Сингония ромбическая; ромбо-дипирамидальный в. с. 3L23PC. Пр. гр. Pbnm(D162h). а0 = 11,13; b0 = 11,27; с0 = 3,97. Кристаллическая структура аналогична структуре антимонита. Облик кристаллов. Так же как и антимонит, встречается в удлиненных шестоватых кристаллах (рис. 111), образованных чаще всего гранями призм {110}, {120}, {130} и пинакоидов {100}, {010}, {001}. Большей частью грани покрыты вертикальной тонкой штриховкой. Агрегаты. Распространен в виде сплошных зернистых масс, иногда лучистых агрегатов.

Рис. 111. Кристаллы висмутина:
m {110}, b {010}, z {301}, L {101}, N {201}, d {211} и др.

Цвет висмутина белый со свинцово-серым оттенком. Часто наблюдается желтая или пестрая побежалость. Непрозрачен. Черта серая. Блеск сильный металлический.

Твердость 2–2,5. Спайность совершенная по {010} и несовершенная по {100} и {001}. Уд. вес 6,4–6,8, в отдельных случаях до 7,1. Прочие свойства. Электричества не проводит.

Диагностические признаки. От похожего на него антимонита отличается более сильным блеском, большим удельным весом и реакцией с КОН (см. антимонит). В агрегатах он похож также на многие сложные по составу сульфоантимониты и сульфовисмутиты, от которых без химических реакций его нелегко бывает отличить.

П. п. тр. на угле легко плавится, кипит и разбрызгивается. В восстановительном пламени дает королек висмута, оставляя на угле лимонно-желтый налет окиси висмута. Характернейшей реакцией на висмут является получение йодистого висмута в виде ярко-красного налета при сплавлении с йодистым калием (в виде каймы вокруг пробы). В HNO3 легко растворяется с выделением всплывающей серы.

Происхождение и месторождения. Висмутин встречается исключительно в высокотемпературных гидротермальных месторождениях, связанных с грейзенами или скарнами. В качестве спутника наблюдается в месторождениях олова, вольфрама, мышьяка, часто в ассоциации с самородным висмутом, арсенопиритом, халькопиритом, иногда самородным золотом, топазом, бериллом, пиритом, галенитом и многими другими сульфидами. Очень редко образует самостоятельные месторождения.

В зоне окисления легко разрушается, образуя основные карбонаты в виде псевдоморфоз по висмутину.

В России известен в олово-вольфрамовых высокотемпературных кварцевых жилах Белухи и Букуки с кварцем, касситеритом, арсенопиритом, сфалеритом, халькопиритом, галенитом и висмутом, в оловоносных грейзенах Шерловой Горы (Восточное Забайкалье). Существенный интерес представляют месторождения Средней Азии, например скарны Устарасая (в 70 км к северо-востоку от г. Ташкента), где висмутин с самородным висмутом встречается в ряде кварцевых жил в известняках в ассоциации с пиритом, арсенопиритом, халькопиритом и др. Крупнейшие в мире висмутовые месторождения находятся в Боливии (Тасна, Чоролк и др.) и в Перу (Серро-де-Паско). Генетически они связаны с молодыми изверженными породами.

Практическое значение. Висмутиновые руды являются главным источником висмута, идущего на изготовление легкоплавких сплавов, стекол с высоким двупреломлением, химических препаратов, для медицинских и других целей.

Здесь же опишем тетрадимит, относящийся, правда, к другой группе.

ТЕТРАДИМИТ — Bi2Te2S. Тетрадимос по-гречески — четырехкратный (часто образует четверники). Синоним: теллуристый висмут.

Химический состав. Bi — 59,3 %, Те — 36,2 %, S — 4,5 %. В ничтожных количествах в виде примесей могут присутствовать Se, Аu, Сu, Рb. Лишь содержание селена иногда достигает 1 %. Золото, часто парагенетически связанное с тетрадимитом, присутствует в виде включений.

Сингония тригональная; дитригонально-скаленоэдрический в. с. L363L23PC. Пр. гр. R3m(D53d). Встречается часто в листоватых или пластинчатых агрегатах. Таблитчатые или ромбоэдрические кристаллы обычно являются четверниками с плоскостью срастания по {018} и {015}. Кристаллическая структура типичная слоистая. Пятнадцатислойная плотнейшая ромбоэдрическая упаковка содержит в вертикальном периоде повторя­емости три идентичных пакета, состоящих из пяти слоев, каждый из которых сложен атомами своего рода. Состав и порядок заполнения слоев в каждом пакете следующий: TeBiSBiTe.

Цвет тетрадимита стально-серый до оловянно-белого, иногда с желтоватой побежалостью. Черта серая. Блеск сильный металлический.

Твердость 1,5–2. В тонких листочках гибок. Спайность весьма совершенная по {0001}. Уд. вес 7,24–7,54. Прочие свойства. Обладает слабой электропроводностью. Термоэлектричен.

Диагностические признаки. По многим внешним признакам похож на молибденит; отличается от него более сильным блеском, большим удельным весом, поведением п. п. тр. и в кислотах.

П. п. тр., в отличие от молибденита, легко плавится на угле; с S и KJ дает ярко-оранжевый налет (наличие висмута). Растворяясь в концентрированной H2SO4, окрашивает ее при нагревании в характерный для Те пурпурный цвет. Легко растворим в HNO3.

Происхождение и месторождения. Тетрадимит — наиболее распространенный из теллуридов минерал, обнаруживается чаще всего в качестве спутника в гидротермальных золоторудных месторождениях. В парагенезисе с ним встречаются различные сульфиды: пирротин, халькопирит, пирит, тетраэдрит, висмутин, а также золото и др.

В зоне окисления месторождений легко разрушается, образуя так называемые висмутовые охры.

В России он встречен во Фроловском руднике из группы Турьинских рудников (Северный Урал), Шилово-Исетском золоторудном месторождении (в 66 км к востоку от Екатеринбурга), в ряде пунктов Западной и Восточной Сибири. Отмечен с золотом, гесситом и висмутином в кварцевых жилах Дарасунского месторождения (Восточное Забайкалье). Совместно с пиритом, висмутом и цумоитом (BiTe) наблюдается в кальцитовых жилах, вмещаемых гранат-диопсидовыми скарнами Тырныауза (Кабардино-Балкария, Северный Кавказ).

В Северо-Западном Казахстане отмечен в кварцевых золотосодержащих жилах месторождения Кумак. Наблюдался также в ряде золоторудных месторождений США, Мексики, Британской Колумбии и др.

Практическое значение. Самостоятельных месторождений не встречается. Как спутник в висмутовых и золоторудных месторождениях может быть использован при комплексной переработке руд для получения висмута и теллура.

9. Группа молибденита

Сюда относятся сернистые соединения четырехвалентных ионов Мо и W. Сульфид вольфрама, тунгстенит WS2, является исключительно редким минералом.

МОЛИБДЕНИТ — MoS2. Название происходит от греч. молибдос — свинец. Синоним: молибденовый блеск.

Химический состав. Мо — 60 %, S — 40 %. По данным химических анализов, содержание Мо колеблется в пределах 57,1–60,05 % и S — 39,7–42 %. Во многих случаях является химически чистым соединением, т. е. не содержит изоморфных примесей, кроме рения. По данным спектральных анализов, содержание рения в молибдените является максимальным по сравнению с содержанием его в других сульфидах (от 5–10–7 до 2–10–4 %).

Сингония гексагональная (у наиболее распространенного политипа 2H); дигексагонально-дипирамидальный в. с. L66L27PC. Пр. гр. P63/mmc(D46h). a0 = 3,156; с0 = 12,275. Более редкий тригональный политип 3R имеет ромбоэдрическую ячейку. Структура типично слоистая, но отличается некоторыми особенностями. Слои ионов Mo располагаются между двумя слоями ионов S (рис. 112), параллельно (0001). Ионы в слоях соединены сильными связями, но силы сцепления между «тройными» слоями резко ослаблены, чем и обусловлена совершенная спайность кристаллов. Координационное число молибдена равно 6, но в силу особенности строения электронной оболочки Мо ему отвечает не октаэдр, а тригональная призма. В данном случае структуру, согласно Н. В. Белову, можно нагляднее представить в виде чередующихся тригональных слоев призм с ионами Мо в центрах с пустыми слоями из октаэдров (рис. 112б).

Рис. 112. Кристаллическая структура молибденита:
а — расположение центров ионов (слои, содержащие ионы молибдена, заштрихованы);
б — та же структура изображена по способу Н. В. Белова

Облик кристаллов. Встречающиеся кристаллы в большинстве случаев несовершенны. Обычно наблюдаются следующие формы: {0001}, {1010}, {101}. Грани {001} покрыты штрихами (рис. 113). Кристаллы имеют облик гексагональных таблиц. Реже встречаются призматические кристаллы. Обычно наблюдается в листовых или чешуйчатых агрегатах. Иногда встречаются сферолитовые образования, гнезда, розетки и землистые разности серовато-черного цвета.

Рис. 113. Три системы штрихов на базальной грани кристалла молибденита

Цвет молибденита свинцово-серый со слабым голубоватым оттенком. Черта серая, часто с зеленоватым оттенком. Блеск металлический.

Твердость 1. В тонких листочках гибок. Жирен на ощупь. На бумаге оставляет черту, как графит. Спайность по {0001} весьма совершенная. Уд. вес 4,7–5. Прочие свойства. Электропроводность при комнатной температуре незначительна, но при повышении температуры увеличивается.

Диагностические признаки. Характерны: свинцово-серый цвет, типичный металлический блеск, очень низкая твердость, спайность по базису. Можно легко принять за крупночешуйчатые разности графита, от которого он отличается более светлой чертой, зеленеющей при растирании на бумаге, более сильным блеском, большим уд. весом и слабой электропроводностью. По сравнению с похожим на него тетрадимитом обладает более слабым блеском и отличается по поведению п. п. тр.

П. п. тр. не плавится, окрашивает пламя в слабый желтовато-зеленоватый цвет. HNO3 разлагается с большим трудом с выделением SO2 и белого или сероватого осадка МоО3. Концентрированная H2SO4 разлагает его лишь при температуре кипения.

Происхождение и месторождения. Генетически месторождения молибденита связаны с интрузивами кислых изверженных пород, главным образом гранитов и гранодиоритов, среди которых он иногда наблюдается в виде редких вкраплений.

Встречается в пегматитовых жилах, но в количествах, не имеющих практического значения.

Промышленные месторождения молибденита связаны с гидротермальными образованиями. Особенно широко распространены месторождения в кварцевых жилах или окварцованных породах. Вообще парагенезис молибденита с кварцем наблюдается в подавляющем большинстве случаев. Иногда выделения молибденита приурочены к тончайшим кварцевым прожилкам, едва заметным простым глазом. Известны случаи тонкодисперсного распределения в кварце, окрашенном им в серый или синеватый цвет. Только под микроскопом в полированных шлифах можно заметить эти выделения.

Часто в кварцево-молибденитовых жилах почти не встречается никаких других сульфидов, за исключением редких зерен пирита. В месторождениях других типов из сопутствующих минералов в одних случаях встречаются тонкочешуйчатые слюды, флюорит, вольфрамит, реже берилл, турмалин, в других — сульфиды меди (чаще халькопирит), железа (пирит, пирротин), цинка (сфалерит) и др. Случаи выделения молибденита в богатых сульфидами участках месторождений сравнительно редки. В кварцевых жилах иногда наблюдаются крупные неравномерно рассеянные кристаллические выделения в виде розеток или гексагональных пластин.

В зоне окисления за счет молибденита в виде псевдоморфоз чаще всего образуется повеллит (Са[МоО4]), иногда возникают характерные пустоты выщелачивания, отвечающие по форме кристаллам молибденита.

В России молибденит известен в гранат-диопсидовых скарнах Тырныауза (Кабардино-Балкария, Сев. Кавказ). Молибденитом представлен главный полезный компонент в кварцевых гидротермальных жилах Жирекенского месторождения (Восточное Забайкалье). Среди флюорит-мусковит-калишпатовых грейзенов совместно с пиритом, пирротином, вольф­рамитом, сфалеритом и другими минералами молибденит является главным рудным минералом в штокверковых залежах Орекитканского месторождения (Забайкалье).

Из иностранных месторождений отметим крупнейшее месторождение Клаймакс в Колорадо (США), представленное огромным штокообразным телом вторичного кварцита, уходящим на большую глубину.

Крупные месторождения известны также в шеелитоносных скарновых зонах, образовавшихся в контакте известняков с гранитами. Здесь молибденит чаще приурочен к многочисленным тонким жилкам кварца, секущим скарновые породы.

Практическое значение. Является единственным промышленным источником очень важного в промышленности металла — молибдена. Молибденит служит также важным источником рассеянного элемента — рения.

Около 90 % мировой добычи этого металла расходуется на изготовление различных высококачественных сортов стали. Остальная часть используется в электротехнике, красочном производстве, беспроволочной телеграфии, химических производствах и т. д.

10. Группа пирита

Здесь рассмотрим обширную группу соединений типа АХ2, где A = Fe, Со, Ni, а также Mn, Pt и Ru, a X2 = S2, Se2, As2, AsS и SbS. Это так называ­емые дисульфиды, диарсениды, сульфоарсениды и сульфоантимониды. Все они обладают многими общими свойствами.

Эта большая группа по минералогическим особенностям может быть разбита на четыре подгруппы:

1) пирита (в тесном смысле), в которой соединение FeS2 является диморфным (пирит и марказит);

2) кобальтина, в которой объединяются сульфоарсениды и сульфоантимониды Ni и Co (Fe в подчиненных количествах); они кристаллизуются в кубической сингонии; кристаллические структуры этих минералов хотя и аналогичны структуре пирита, но симметрия их ниже;

3) лёллингита, представленная диарсенидами Fe, Ni и Co, кристаллизующимися в ромбической сингонии;

4) арсенопирита, в которую входят сульфоарсениды и сульфоантимониды (главным образом Fe), кристаллизующиеся в моноклинной и ромбической сингониях.

Коллоидальный и метаколлоидный бисульфид железа в виде тонкодисперсных черных масс носит специальное название — мельниковит. Он нами не рассматривается как самостоятельный минерал, так как рентгенометрически в одних случаях устанавливается дебаеграмма пирита, в других — марказита.

Опишем здесь характерные особенности типической структуры пирита, а также марказита.

Кристаллическая структура типа пирита схематически изображена на рисунках 114 и 115. В основе этой структуры лежит кубическая гранецентрированная решетка, характерная для структурного типа NaCl (ср. с рис. 92), в которой ионы серы, располагаясь парами, сильно сближены между собой с образованием анионной группы [S2]–2. Расстояние S—S в этих группах равно 2,05 Å (вместо 3,5 Å — двойного ионного радиуса). Группы [S2]2– своими осями ориентированы по диагоналям малых кубов, притом так, что они не пересекаются между собой. На рисунке 115 расстояние между атомами серы в парах несколько уменьшено с целью показать соответствие этой структуры структуре типа NaCl. Реальные соотношения для [S2]2– показаны отдельно справа.

Рис. 114. Кристаллическая структура пирита

Рис. 115. Кристаллическая структура пирита.
Черные сферы — ионы Fe2+; светлые — группы [S2]2–

В структуре ромбической модификации Fe[S2] — марказита мы находим те же группы [S2]2–, что и в пирите. Ионы Fe располагаются по углам ромбической ячейки (рис. 116а) и в центре ячейки; они окружены группами ионов [S2]2–. Ниже (рис. 116б) показано, что пары [S2]2– наклонены по отношению к оси с и в обоих концах как бы упираются в центры триад ионов Fe, т. е. так же как и в пирите.

Рис. 116. Кристаллическая структура марказита: а — общий вид структуры;
ионы Fe2+ покрыты точками; б — ориентировка группы [S2]2–
(в середине) между двумя триадами ионов железа (по краям)

Таким образом, на примерах структур пирита и марказита мы видим, что один и тот же тип координации может быть осуществлен в совершенно различных по симметрии кристаллических структурах.

Из физических свойств, отличающих минералы этой группы от других, отметим прежде всего то, что среди всех сульфидов и им подобных соединений минералы группы пирита обладают наибольшей твердостью: 5–6 (сперрилит 6–7, а лаурит (RuS2) даже 7–8). Обращает на себя внимание отсутствие совершенной спайности. Все они слабо проводят электричество.

ПИРИТ — Fe[S2]. От греч. пирос — огонь. По-видимому, это название связано со свойствами пирита давать искры при ударе или с его сильным блеском. Синонимы: серный колчедан, железный колчедан.

Химический состав. Fe — 46,6 %, S — 53,4 %. Нередко содержит в очень небольших количествах примеси: Со (кобальтистый пирит), Ni, As, Sb, иногда Cu, Au, Ag и др. Содержание последних элементов обусловлено наличием механических примесей в виде мельчайших включений посторонних минералов, иногда в тонкодисперсном состоянии. В этих случаях мы имеем дело по существу с твердыми псевдорастворами — кристаллозолями.

Сингония кубическая; дидодекаэдрический в. с. 3L24L363PC. Пр. гр. Ра3(Т6h). а0 = 5,40667. Кристаллическая структура разобрана выше. Облик кристаллов. Пирит широко распространен в виде хорошо образованных кристаллов. Из многочисленных установленных для него форм наиболее часто встречаются следующие: {100}, {210}, реже {111}, {321}, {110} и др. (рис. 117). В зависимости от преобладания тех или иных граней находится и габитус кристаллов: кубический, пентагондодекаэдрический, реже октаэдрический. Размеры кристаллов иногда достигают нескольких десятков сантиметров в поперечнике. Характерна штриховатость граней параллельно ребрам (100) : (210), т. е. а : е (ср. рис. 117б, в с рис. 117а). Эта штриховатость находится в соответствии с кристаллической структурой пирита и всегда ориентирована перпендикулярно каждой соседней грани, т. е. наружные элементы симметрии вполне соответствуют особенностям структуры пирита. Двойники встречаются по (110) (рис. 118), редко по (320).

Рис. 117. Форма кристаллов пирита: а — куб, б — пентагондодекаэдр е {210};
в — та же форма в комбинации с кубом а {100}; г — октаэдр о {111},
притупленный гранями пентагондодекаэдра; д — комбинация октаэдра (о)
и пентагондодекаэдра (е) — так называемый минеральный икосаэдр
(комбинация октаэдра с пентагондодекаэдром)

Рис. 118. Двойник пирита по оси [111] типа «железный крест»

Агрегаты. В многочисленных горных породах и рудах пирит наблюдается в виде вкрапленных кристалликов или округлых зерен. Широким развитием пользуются также сплошные агрегатного строения пиритовые массы. В осадочных породах часто встречаются шаровидные конкреции пирита, нередко радиально-лучистого строения, а также секреции в полостях раковин. Часты гроздевидные или почковидные образования пирита в ассоциации с другими сульфидами.

Цвет пирита светлый латунно-желтый или соломенно-желтый, часто с побежалостями желтовато-бурого и пестрых цветов, тонкодисперсные сажистые разности имеют черный цвет. Черта темно-серая или буровато-черная. Блеск сильный металлический.

Твердость 6–6,5. Относительно хрупок. Спайность весьма несовершенная по {100} и {111}, иногда {110}. Излом неровный, иногда раковистый. Уд. вес 4,9–5,2. Прочие свойства. Электричество проводит слабо. Термоэлектричен. Некоторые разности обладают детекторными свойствами.

Диагностические признаки. Легко узнается по цвету, формам кристаллов и штриховатости граней, высокой твердости (единственный из широко распространенных сульфидов, который царапает стекло). По совокупности этих признаков он легко отличается от несколько похожих на него по цвету марказита, халькопирита, пирротина и миллерита.

П. п. тр., растрескиваясь, плавится в магнитный шарик. Легко теряет часть серы, которая горит голубым пламенем. В запаянной трубке возгоняется часть серы — остается моносульфид FeS. В HNO3 разлагается с трудом (в порошке легко), выделяя серу. В разбавленной НСl не растворяется.

Происхождение и месторождения. Пирит является наиболее распространенным в земной коре сульфидом и образуется в самых различных геологических условиях.

1. В виде мельчайших вкраплений он наблюдается во многих магматических горных породах. В большинстве случаев является эпигенетическим минералом по отношению к силикатам и связан с наложением гидротермальных проявлений.

2. В контактово-метасоматических месторождениях является почти постоянным спутником сульфидов в скарнах и магнетитовых залежах. В ряде случаев оказывается кобальтоносным. Образование его, так же как и других сульфидов, связано с гидротермальной стадией контактово-метаморфических процессов.

3. Как спутник широко распространен в гидротермальных месторождениях различных по составу руд почти всех типов и встречается в парагенезисе с самыми различными минералами. При этом он часто наблюдается не только в рудных телах, но и в боковых породах в виде вкраплений хорошо образованных кристаллов, возникших метасоматическим путем (метакристаллов).

4. Не менее часто встречается и в осадочных породах и рудах. Широко известны конкреции пирита и марказита в песчано-глинистых отложениях, месторождениях угля, железа, марганца, бокситов и др. Его образование в этих породах и рудах связывается с разложением органических остатков без доступа свободного кислорода в более глубоких участках водных бассейнов. В парагенезисе с ним чаще всего в таких условиях встречаются: марказит, мельниковит (черная порошковатая разность дисульфида железа), сидерит (Fe[CO3]) и др.

В зоне окисления пирит, как и большинство сульфидов, неустойчив, подвергаясь окислению до сульфата закиси железа, который при наличии свободного кислорода легко переходит в сульфат окиси железа. По­следний, гидролизуясь, разлагается на нерастворимую гидроокись железа (лимонит) и свободную серную кислоту, переходящую в раствор. Этим путем образуются широко наблюдаемые в природе псевдоморфозы лимонита по пириту.

Сам же пирит часто образует псевдоморфозы по органическим остаткам (по древесине и различным остаткам организмов), а в эндогенных образованиях встречаются псевдоморфозы пирита по пирротину, магнетиту (FeFe2O4), гематиту (Fe2O3) и другим железосодержащим минералам. Эти псевдоморфозы, очевидно, образуются при воздействии H2S на минералы.

Месторождения, в которых в том или ином количестве встречается пирит, бесчисленны. Его можно встретить в месторождениях самых различных генетических типов, однако главная масса находок все же относится к эндогенным образованиям.

В России наиболее богатые им крупные колчеданные залежи широко распространены на Урале, где они приурочены к меридионально вытянутой на сотни километров полосе измененных кислых и основных эффузивов и осадочных пород силуро-девонского возраста. Рудные тела, состоящие почти сплошь из сульфидов, главным образом пирита, обычно имеют форму жило- или линзообразных залежей. Отметим наиболее важные и богатые пиритом месторождения: Калатинское в Невьянском районе; Дегтярское в Сысертском районе; ряд Карабашских месторождений в Кыштымском районе; Блявинское (у Медногорска) в Оренбургской области и др.

С минералогической точки зрения большой интерес представляют друзы кристаллов пирита известного Березовского золоторудного месторождения на Урале. Обычно они представлены кубическими формами с сильно исштрихованными гранями (см. рис. 11), в меньшей степени — пентагондодекаэдрами и октаэдрами. Встречаются иногда гигантские кристаллы (до 32 кг весом). Крупные кристаллы пирита и их сростки встречаются в виде конкреций в углях, например — в Тулунском (Иркутская область) и Грызловском (Тульская область) разрезах.

Из закавказских месторождений к числу пиритовых залежей относится Чирагидзорское месторождение в Гянджинском районе (Азербайджан). Крупные гидротермальные месторождения Co-пирита Миндиги и Миндола находятся в Катанге (Демократическая Республика Конго).

Весьма хорошо образованные кристаллы и их сростки декоративно-коллекционного качества происходят из месторождения Логроньо в Испании, где залегают в известняках. Конкреционные дискосферолиты пирита, известные как «пиритовые доллары», находятся в глинистых сланцах в Спарте (Иллинойс, США).

Практическое значение. Пиритовые руды являются одним из основных видов сырья, используемого для получения серной кислоты. Среднее содержание серы в эксплуатируемых для этой цели рудах колеблется от 40 до 50 %. Обработка руды производится путем обжига в специальных печах. Получающийся при этом сернистый газ SO2 подвергается окислению с помощью окислов азота в присутствии водяного пара до H2SO4.

Нежелательной примесью в рудах, идущих на сернокислотное производство, является мышьяк.

Часто содержащиеся в пиритовых рудах медь, цинк, иногда золото селен и др. могут быть получены побочными способами. Получаемые в результате обжига так называемые железные огарки в зависимости от их чистоты могут быть использованы для изготовления красок или как железная руда.

Руды, содержащие кобальтистый пирит, служат источником приблизительно половины потребляемого в мире кобальта, несмотря на низкое содержание в них этого элемента (0,5–1 % в минерале).

МАРКАЗИТ — Fe[S2]. Название произошло от древнеарабского слова, которым называли пирит и марказит.

Химический состав. Fe — 46,6 %, S — 53,4 %. Примеси: в очень небольших количествах As, Sb, Tl и др.

Сингония ромбическая; ромбо-дипирамидальный в. с. 3L23PC. Пр. гр. Рпnт(D122h). а0 = 4,4369, b0 = 5,4149; с0 = 3,381. Кристаллическая структура описана выше. Облик кристаллов таблитчатый (рис. 119), реже короткостолбчатый, псевдодипирамидальный (рис. 120). Двойники, простые и кратные, являются весьма распространенными; они имеют характерный копьевидный облик (рис. 121). Иногда характерны гребенчатые формы сростков расщепленных кристаллов (рис. 122). Встречается в виде конкреций, а также гроздевидных, почковидных, коркообразных и неправильной формы образований.

Рис. 119. Таблитчатый кристалл марказита
с закономерно наросшим кубиком пирита

Рис. 120. Псевдодипирамидальный кристалл марказита,
ограненный призмами двух поясов

Рис. 121. Копьевидногребенчатый сросток полисинтетических
двойников кристаллов марказита призматического габитуса

Рис. 122. Радиальный сросток копьевидных двойников
марказита (Грицово, Тульская обл.)

Цвет марказита латунно-желтый с сероватым или зеленоватым оттенком. Черта темная зеленовато-серая. Блеск металлический.

Твердость 5–6. Хрупок. Спайность несовершенная по {101}. Уд. вес 4,6–4,9 (ниже, чем пирита). Прочие свойства. Слабо проводит электричество.

Диагностические признаки. Для кристаллов марказита характерны их копьевидные или таблитчатые формы, отличающие их от кристаллов пирита. В конкрециях и плотных массах его нелегко отличить от пирита. Подобные образования, обнаруженные в осадочных породах, нередко традиционно принимаются за марказит без испытания, однако проверка показывает, что около 80 % таких конкреций сложено пиритом. В свежем изломе характерен зеленоватый оттенок, не свойственный пириту. В полированных шлифах под микроскопом легко отличим от пирита сильно выраженными эффектами оптической анизотропии. Существенно отличается от пирита и по дифрактограмме.

П. п. тр. и по поведению в кислотах совершенно аналогичен пириту.

Происхождение и месторождения. В природе распространен гораздо реже, чем пирит. Встречается как в эндогенных, так и в экзогенных минеральных образованиях.

Марказит эндогенного происхождения наблюдается в гидротермальных, преимущественно жильных месторождениях. Как правило, он образуется в самых последних стадиях минерализации. Чаще всего он устанавливается в друзовых пустотах в виде наросших кристаллов, большей частью мелких, иногда в виде пылевидных налетов на кристаллах кварца, кальцита, галенита, сфалерита, блеклых руд и других минералов, реже в виде корок и сферолитовых форм.

В осадочных породах, главным образом в угленосных песчано-глинистых отложениях, марказит встречается преимущественно в виде конкреций, неправильной формы зерен и псевдоморфоз по органическим остаткам, а также тонкодисперсного черного сажистого вещества (мельниковита). По макроскопическим признакам его иногда ошибочно принимают за пирит.

В условиях кислородного выветривания марказит разлагается легче, чем пирит, с образованием сульфатов железа и свободной серной кислоты, а в условиях недостатка кислорода — также самородной серы. В конечном счете при окислении марказита возникают гидроокислы железа (лимонит). Экспериментальными исследованиями установлено, что марказит в отличие от пирита сравнительно легко образуется из кислых рас­т­воров при более низких температурах. В противоположность пириту не образует в природе крупных месторождений в виде сплошных руд.

Из гидротермальных сульфидных месторождений, в которых марказит наряду с пиритом встречается в более или менее существенных количествах, в качестве примера следует отметить Блявинское в Оренбургской области (Южный Урал). Он здесь представлен тонкокристаллическими, спорадически распределенными агрегатами. Кроме пирита, в ассоциации с марказитом находится сфалерит, вюртцит, халькопирит, кварц и др.

Осадочные марказитсодержащие породы широко распространены во многих областях России. К их числу, например, относятся угленосные отложения подмосковного Буроугольного бассейна (Тульская область), содержащие различной формы конкреции марказита и пирита. По разнообразию форм марказитовых конкреций славятся Курьи-Каменские и Троицко-Байновские месторождения глинистых отложений на восточном склоне Среднего Урала (к востоку от Екатеринбурга). Помимо шаровидных желваков, здесь широко распространены почковидные стяжения, конкреции с радиально-лучистым расположением индивидов, оканчивающихся хорошо выраженными копьевидными двойниками.

Из иностранных следует отметить гидротермальные месторождения Клаусталль и Фрайберг (Германия), в которых встречались прекрасно образованные кристаллы марказита, и др.

Практическое значение. В случае наличия больших масс месторождения марказита, так же как месторождения пирита, могут являться предметом разработки с целью производства серной кислоты.

СПЕРРИЛИТ — Pt[As2]. Название дано по имени химика, обнаружившего этот минерал в рудах Садбери.

Химический состав. Pt — 56,5 %, As — 43,5 %. Примеси (в %): Rh (до 1,6), Fe (до 0,4), Сu (до 0,7), Sb (до 0,6), иногда Sn (до 3,6).

Сингония кубическая, дидодекаэдрический в. с. 3L24L363PC. Пр. гр. Ра3 (T6h). a0 = 5,950. Кристаллическая структура аналогична структуре пирита. Наблюдается почти исключительно в кристаллах, большей частью мелких. Облик кристаллов кубический, октаэдрический, реже пентагондодекаэдрический. Часты комбинации форм {100}, {111}, {110}, {201} и др. (рис. 123). Двойники редки.

Цвет сперрилита оловянно-белый. Черта темно-серая. Блеск сильный металлический.

Твердость 6–7 (второй по твердости после лаурита минерал из класса сульфидов и арсенидов). Спайность наблюдается по кубу. Уд. вес 10,5–10,7 (наивысший для минералов данного класса). Прочие свойства. Слабо проводит электричество.

Диагностические признаки. Важнейшими свойствами следует считать цвет, высокую твердость, большой удельный вес, нахождение в виде кристаллов, кислотоустойчивость и реакцию на платину и мышьяк.

П. п. тр. на угле легко сплавляется в белый металлический шарик с губчатой поверхностью. При этом выделяются белые пары окиси мышьяка. На раскаленной докрасна платиновой пластинке мелкие зернышки мгновенно расплавляются с выделением As2O3; к самой пластинке приваривается губчатая платина. В кислотах не растворяется, даже в царской водке.

Происхождение и месторождения. В России известен на Талнахском сульфидном медно-никелевом месторождении Норильской группы, а также в россыпях ряда речек в Зейском и Тимптонском районах Восточной Сибири (Читинская область), часто в виде хорошо образованных кристалликов (см. рис. 123).

Рис. 123. Кристалл сперрилита

Встречается в месторождениях медно-никелевых сульфидных руд типа Садбери в генетической связи с основными изверженными породами (габбро-норитами и габбро-диабазами). Парагенетически связан с пирротином, халькопиритом, пентландитом. Из минералов платиновой группы с ним чаще других встречается палладистая платина.

В тех же парагенетических группировках, что и в Садбери, сперрилит был встречен среди пегматоидных образований основных магм в Бушвельдском комплексе (Южная Африка). В том же районе он наблюдался в оригинальных метасоматических месторождениях в известняках на контакте с основными породами Бушвельдского комплекса в ассоциации со скарновыми минералами.

Благодаря химической стойкости сперрилит в зоне окисления не разлагается и при разрушении месторождений попадает в россыпи, часто хорошо сохраняя кристаллические грани.

Практическое значение. Как богатый платиной минерал представляет несомненный промышленный интерес. Даже в тех случаях, когда его содержание в рудах ничтожно, он может извлекаться попутно при комплексном использовании руд.

КОБАЛЬТИН — Co[AsS]. Синоним: кобальтовый блеск.

Химический состав. Со — 35,4 %, As — 45,3 %, S — 19,3 %. По данным анализов, содержание Cо колеблется в пределах 26–34 %, As — 42–48 % и S — 18–21 %. Кроме того, иногда присутствуют: Ni — до 2–3 % и Fe — до 8, а в некоторых случаях до 16 % (железистый кобальтин).

Сингония кубическая; пентагон-тритетраэдрический в. с. 3L24L3 Пр. гр. Р213(Т 4). a0 = 5,575. Установлено, что большей частью кобальтин характеризуется ромбической симметрией благодаря упорядочению в развороте неэквивалентных концов гантелеобразных групп [AsS] и лишь благодаря миметическому микродвойникованию приобретает псевдокубическую симметрию.

Кристаллическая структура весьма похожа на структуру пирита. Облик кристаллов. Кристаллы встречаются довольно часто. Облик октаэдрический, кубический и пентагон-додекаэдрический (см. рис. 117). В связи с этим наиболее распространены формы: {111}, {100}, {210}, {110} и др. Характерны также комбинации, обычные и для пирита, особенно {111} и {210}, изображенные на рисунке 124. Двойники по (110) и (111) редки. Кобальтин встречается также в виде неправильной формы зерен и в сплошных массах.

Рис. 124. Кристалл кобальтина.
Комбинация пентагондодекаэд ра и октаэдра

Цвет кобальтина белый или стально-серый с розоватым оттенком. Богатые железом разновидности имеют темно-серый или серовато-черный цвет. Черта серовато-черная. Блеск металлический.

Твердость 5–6. Хрупок. Спайность средняя по кубу. Уд. вес 6–6,5. Слабо проводит электричество.

Диагностические признаки. При внимательном наблюдении кобальтин нетрудно узнать по характерному розоватому оттенку, высокой твердости и нередко по типичным комбинациям форм {100}, {111} и {210}. От похожего на него по цвету линнеита отличается более высокой твердостью. В выветрелых образцах характерен также парагенезис с интенсивно окрашенным в розовый цвет эритрином (Co3[AsО4]2 . 8H2O).

П. п. тр. плавится в серый слабо магнитный шарик, образуя на угле налет As2O3. Перл буры окрашивается в синий цвет (реакция на кобальт). В азотной кислоте разлагается с выделением S и As2O3 (раствор розовый).

Происхождение и месторождения. Встречается главным образом как типичный минерал гидротермальных процессов в контактово-метасоматических и жильных месторождениях. Ассоциирует обычно с мышьяково-сернистыми минералами кобальта и железа, а также халькопиритом, сфалеритом, кварцем, скарновыми минералами, железистым хлоритом, турмалином, апатитом и др.

При выветривании за счет кобальтина, так же как и других мышьяковистых соединений кобальта, легко образуется землистый или кристаллический эритрин, розовый цвет которого бросается в глаза в зонах окисления сульфидно-мышьяковых месторождений кобальта.

В России кобальтин известен в скарново-железорудном месторождении Покровское (Средний Урал) с магнетитом, халькопиритом и пиритом, а также в Хову-Аксинском месторождении (Тува) совместно с арсенидами кобальта и никеля.

В значительных количествах кобальтин встречался в Дашкесанском железорудном месторождении контактово-метасоматического происхождения (Гянджинский район Азербайджана). Здесь он наблюдался среди гидротермально измененных актинолит-гранатовых скарнов в висячем боку магнетитовой залежи. Парагенетически с ним связаны халькопирит, пирит, сфалерит, молибденит, магнетит, гранат, кальцит, апатит, кварц и др.

В Канаде в значительных количествах встречается в месторождениях округа Кобальт в Онтарио (Канада) в ассоциации с саффлоритом, скуттерудитом, хлоантитом, никелином, герсдорфитом, самородным серебром, аргентитом, доломитом, кальцитом и другими минералами, а также в месторождениях Скуттеруд (Норвегия) и Тунаберг (Швеция).

Практическое значение. Кобальтин является одним из главных источников кобальта в промышленных рудах. Так как стоимость кобальта очень высока, то сульфидно-мышьяковистые руды могут иметь промышленное значение даже при содержании кобальта в них 0,1–0,2 %.

Применение кобальта основано на его весьма ценных свойствах: 1) различные соединения его являются стойкими синими и зелеными красками, применяемыми для окрашивания стекол и керамических изделий, что было известно еще в глубокой древности; 2) кобальт как легирующий элемент при изготовлении специальных сталей обусловливает их высокую твердость и стойкость при высоких температурах, а также исключительные магнитные свойства; 3) с другими металлами (Cr, Mo, W и др.) дает ряд технически важных сплавов и т. д.

ГЕРСДОРФИТ — Ni[AsS]. Синоним: никелевый блеск. Существуют разновидности, обогащенные кобальтом и железом.

Химический состав. Ni — 35,4 %, As — 45,3 %, S — 19,3 %. Содержание Ni обычно колеблется в пределах 26–40 %, As — 37–56 % и S — 6–19 %. Из примесей нередко присутствуют Co, Fe, Sb и др.

Сингония кубическая; пентагон-тритетраэдрический в. с. 3L24L3. Пр. гр. P213(Т 4). a0 = 5,719. Кристаллическая структура похожа на структуру пирита. Облик кристаллов октаэдрический или кубический. Наиболее часто наблюдающиеся формы: {100}, {111}, {110}, {210}, {311}. Двойники редки по (111). Чаще встречается в зернистых агрегатах.

Цвет герсдорфита серебряно-белый до стально-серого. Черта серовато-черная. Блеск металлический.

Твердость 5,5. Хрупок. Спайность иногда устанавливается по {111}. Уд. вес 5,6–6,2. Хороший проводник электричества.

Диагностические признаки. Макроскопически его трудно отличить от целого ряда мышьяковистых минералов: скуттерудита (CoAs2-3), никельскуттерудита (NiAs2-3), ульманита (Ni[SbS]), арсенопирита (Fe[AsS]) и др. Приходится прибегать к микроскопическим исследованиям и к химическим реакциям на Ni, As и S, а в случае наличия изоморфных примесей Fe, Co, Sb — и к количественным определениям содержаний хотя бы главнейших элементов.

П. п. тр. на угле плавится в шарик, дающий реакцию на Ni. В HNO3 разлагается с выделением S и As2O3. Раствор имеет зеленый цвет, указывающий на присутствие Ni.

Происхождение и месторождения. Герсдорфит принадлежит к числу минералов, встречающихся преимущественно в гидротермальных месторождениях. Парагенетически с ним связаны арсениды и сульфиды никеля: никелин, миллерит, скуттерудит, раммельсбергит, ульманит и др. Из других минералов в ассоциации с ним могут встречаться различные сульфиды, а также карбонаты (кальцит, анкерит, доломит) и кварц.

В зоне окисления, так же как и для других арсенидов никеля, за счет герсдорфита образуется ярко-зеленый аннабергит (Ni3[AsO4]2 . 8H2O).

На территории России герсдорфит был констатирован в очень немногих месторождениях, и притом в крайне незначительных количествах. Имеются указания на находки его в Березовском золоторудном месторождении на Урале и в виде мелких зерен в крупнокристаллическом доломите, затем в Берикульском серебро-золоторудном месторождении (Кемеровская обл., Западная Сибирь) в ассоциации с раммельсбергитом, никелином и др. В Астафьевском (Южный Урал) месторождении кварца известен в виде кристаллических включений в кварце. В зарубежных странах в наиболее значительных количествах был установлен в ряде месторождений Гарца (Германия), Рудных гор (Саксония) и в других пунктах.

Практическое значение этого минерала сравнительно невелико, поскольку он обычно встречается лишь как спутник в сульфидно-мышьяковистых рудах никеля и кобальта.

ЛЁЛЛИНГИТ — Fe[As2]. Название дано по городу Лёллинг в Каринтии (Австрия). Впервые описал его Моос.

Химический состав. Fe — 27,2 %, As — 72,8 %. Отношение Fe : As несколько колеблется. В небольших количествах обычно устанавливается S (до 6 %) и Sb (до 5 %). Существуют разновидности, обогащенные кобальтом (глаукопирит), указывающие на непрерывный ряд твердых растворов: лёллингит — саффлорит (FeAs2 — CoAs2). Наряду с кобальтом обычно в небольших количествах присутствует также никель.

Сингония ромбическая; ромбо-дипирамидальный в. с. 3L23PC. Пр. гр. Рппт (D122h). a0 = 5,227; b0 = 5,959; с0 = 2,894. Кристаллическая структура аналогична структуре марказита, хотя по типу координации As вокруг Fe несколько отличается как от марказита, так и от арсенопирита. При замещении железа кобальтом структура сохраняется. С увеличением отношения (Co + Ni) : Fe происходит постепенное увеличение размера ячейки вдоль оси с, в то время как длина двух других ребер ячейки остается приблизительно той же самой.

Облик кристаллов в большинстве случаев призматический (рис. 125). Встречается также в сплошных массах.

Рис. 125. Кристаллы лёллингита
m {110}, u {140}, e {101}, s {120}, l {101}

Цвет лёллингита серебряно-белый до стально-серого. Черта серовато-черная. Блеск металлический.

Твердость 5–5,5. Хрупок. Спайность иногда отчетливая по {010} и {110}. Излом неровный. Уд. вес 7–7,4 (значительно выше, чем арсенопирита). Прочие свойства. Хороший проводник электричества.

Диагностические признаки. По внешним признакам чрезвычайно похож на арсенопирит, за который его часто ошибочно принимают. Существенное различие устанавливается лишь в удельных весах этих минералов. Некоторые отличия наблюдаются также под микроскопом в полированных шлифах.

П. п. тр. плавится труднее арсенопирита. В закрытой стеклянной трубке дает только металлический мышьяк, если примесь серы в нем не до­стигает значительной цифры. В HNO3 растворяется с выделением As2O3.

Происхождение и месторождения. В природе встречается реже, чем арсенопирит, и обычно в незначительных количествах. Наблюдается в гидротермальных жильных и метасоматических месторождениях, в ассоциации нередко с арсенопиритом, сульфидами железа и меди, арсенидами Co, а также кальцитом, сидеритом, кварцем и др. Изредка отмечался в гранитных пегматитах.

В зоне окисления разрушается; образуется скородит (Fe3+[AsO4] . 2H2O).

В России находки лёллингита отмечены в ряде пунктов Урала (Турьинские рудники, Кочкарское золоторудное месторождение). В оловорудном Сохондинском месторождении в Кыринском районе (Читинская обл.) этот минерал встречался в виде сплошных скоплений и прожилков до 3 см мощностью. Характерно, что он образуется позже арсенопирита, обрастая его кристаллы. На месторождении Тигриное (Приморье) находится вместе с арсенопиритом, касситеритом, вольфрамитом, топазом и флюоритом в кварцевых жилах. Известны находки его и в гранитных пегматитах.

Описан во многих иностранных месторождениях Каринтии (Австрия), Гарца и Саксонии (Германия), Норвегии, Канады и др.

Практическое значение. Как наиболее богатый мышьяком арсенид железа представляет мышьяковую руду.

АРСЕНОПИРИТ — Fe[AsS]. Синонимы: мышьяковый колчедан, миспикель. Разновидность: данаит — кобальтоносный арсенопирит; богатые кобальтом разности носят название глаукодот.

Химический состав. Fe — 34,3 %, As — 46,0 %, S — 19,7 %. Химические анализы показывают частые отклонения от этих величин, особенно для As и S. В качестве примесей нередко содержит Co, реже Ni, Sb. Для многих месторождений особенно характерной является золотоносность арсенопирита. Золото часто устанавливается под микроскопом в виде включений, однако в большей части оно присутствует в виде тонкодисперсной фазы, т. е. арсенопирит в данном случае представляет собой по существу кристаллозоль.

Сингония моноклинная; призматический в. с. L2PC. Пр. гр. B21/d(C52h). а0 = 9,58; b0 = 5,69; c0 = 6,42; β = 90°. Кристаллическая структура. Хотя арсенопирит по морфологическим особенностям кристаллов относят к ряду марказита, однако рентгенометрические исследования показывают, что реальная структура этого минерала моноклинная и лишь в результате двойникования он — псевдоромбический. Каждый ион Fe окружен внутри искаженного октаэдра тремя ионами S, причем в октаэдре три вершины заняты S, а другие три — As. Ионы As и S располагаются по вершинам искаженного тетраэдра: ионы As окружены тремя ионами Fe и одним ионом S, а ионы S — тремя ионами Fe и одним ионом As.

Облик кристаллов. Очень часто встречается в прекрасно выраженных кристаллах, обычно имеющих приз­матический облик, от короткостолбчатых до шестоватых и игольчатых (рис. 126). Весьма распространены также псевдодипирамидальные кристаллы, образованные равномерным развитием призм первого и второго рода. Наиболее часто наблюдаются следующие формы: {101}, {230}, {210}, {140} и др. Характерна штриховатость граней вдоль оси с. Кристаллы широко развиты в друзовых пустотах, но очень часто встречаются также и метакристаллы, развившиеся метасоматическим путем в боковых породах месторождений. Наблюдаются двойники, имеющие нередко крестообразный облик, а также — звездчатые тройники (рис. 127). Агрегаты. В сплошных массах образует зернистые и шестоватые агрегаты.

Рис. 126. Кристалл арсенопирита

Рис. 127. Двойник и тройник арсенопирита

Цвет арсенопирита оловянно-белый (для граней кристаллов) до стально-серого (в изломе). Часто побежалость желтого цвета. Черта серовато-черная, иногда с буроватым оттенком. Блеск металлический.

Твердость 5,5. Хрупок. Спайность довольно ясная по {101}, а также по {001}. Уд. вес 5,9–6,2. Прочие свойства. Электричество проводит. Температура разложения лежит в пределах 430–675 °С, причем устанавливается, что связь между Fe и As более слабая, чем между Fe и S.

Диагностические признаки. Характерными являются оловянно-белый цвет граней кристаллов, относительно высокая твердость и содержание в качестве главных составных частей железа, мышьяка и серы. При ударе молотком издает чесночный запах. Очень характерны также формы кристаллов. От лёллингита (Fe[As2]) отличается меньшим удельным весом. От мышьяковистых соединений никеля и кобальта (смальтина, хлоантита и др.) в зернистых массах с достоверностью можно отличить лишь с помощью качественных химических испытаний и при исследовании под микроскопом в полированных шлифах с применением микрохимических реакций.

П. п. тр. в восстановительном пламени плавится, издавая чесночный запах; дает магнитный королек томпаково-бурого цвета в изломе. В за­крытой трубке образуется обильный красный возгон сернистого мышьяка, а затем кольцо металлического мышьяка черного цвета. В HNO3 разлагается с выделением S и As2O3.

Происхождение и месторождения. Арсенопирит принадлежит к числу минералов гидротермального происхождения и является одним из наиболее распространенных носителей мышьяка в эндогенных месторождениях.

В типичных гидротермальных, жильных и метасоматически образовавшихся месторождениях он выделяется преимущественно в более высокотемпературные стадии минералообразования. Нередки самостоятельные его месторождения, в которых он является главным рудным минералом. В качестве спутника участвует в составе самых различных месторождений: олова, вольфрама, висмута, меди, свинца, цинка и др. Из нерудных минералов в ассоциации с ним чаще всего наблюдаются кварц, турмалин, полевые шпаты, слюды, карбонаты, иногда берилл, топаз и др.

В процессе окисления в зоне выветривания арсенопирит сравнительно быстро разлагается. При этом образуется скородит (Fe3+[AsO4] .2О), обычно в виде бледноокрашенных в желтоватые и грязно-зеленые тона рыхлых и землистых масс (в смеси с гидроокислами железа он приобретает коричневый или бурый цвет).

На территории России известны десятки месторождений, в которых арсенопирит является главным рудообразующим минералом и имеет промышленное значение. Отметим некоторые из них. На Южном Урале он в существенных количествах встречается в золоторудных жильных месторождениях: Кочкарском (Челябинская область) и Джетыгаринском (Северо-Западный Казахстан). Арсенопирит этих месторождений содержит золото. В Восточной Сибири в значительных количествах встречается в весьма интересном в минералогическом отношении золоторудном Дарасунском месторождении. Здесь золотоносный арсенопирит в ассоциации с кварцем, пиритом, сфалеритом, халькопиритом, бурнонитом и другими минералами встречается в виде замечательных друз кристаллов, часто шестоватого облика. Другое месторождение — Запокровское — представляет собой сложную, неправильную по форме жилу среди доломитизированного известняка и отчасти скарнов. Прекрасно образованные кристаллы арсенопирита из этого месторождения обладают изометрическим или уплощенным обликом. Близкие к изометричным хорошо образованные кристаллы арсенопирита обнаруживаются в виде друз с пирротином, галенитом и сфалеритом в среднетемпературных гидротермальных жилах среди пироксеновых скарнов Дальнегорского месторождения (Приморье).

В Средней Азии известен ряд крупных месторождений как жильных, так и метасоматических, образовавшихся в известняках: Уч-Имчак (в горах Таласского Алатау, Киргизия) в ассоциации с пирротином, пиритом, висмутином; Такели (к югу от Ташкента, Узбекистан), руды которого имеют сложный минералогический состав, и др. Из других иностранных упомянем лишь о крупнейшем месторождении Болиден (Швеция), в котором арсенопирит богат золотом, не извлекаемым полностью при механическом обогащении.

Практическое значение. Арсенопиритовые руды являются основным сырьем для получения различных соединений мышьяка, используемых частью в сельском хозяйстве для борьбы с вредителями, а также в красочной, кожевенной и других отраслях химической промышленности. Минимальное промышленное содержание мышьяка в этих рудах принимается 5–6 %. При комплексном использовании полиметаллических руд мышьяк из минералов, его содержащих, может получаться попутно, особенно в отходящих газах при плавках руд.

11. Группа скуттерудита

Сюда относятся арсениды Ni и Co состава АХ3 или 3–2, образующие изоморфные смеси, в которых в значительных количествах присутствует также Fe. Эти минералы кристаллизуются в кубической сингонии.

Рентгенометрические исследования показывают, что эти минералы по своей кристаллической структуре существенно отличаются от минералов предыдущей группы, несмотря на то что состав их часто может быть выражен в виде диарсенидов.

Характерной особенностью кристаллической структуры скуттерудита (рис. 128) является то, что атомы мышьяка составляют четверные группы As4 и расположены по вершинам квадрата. Эти плоские группы располагаются посередине ребер и граней, причем ориентированы параллельно сторонам куба ячейки, катионы при этом занимают центры октантов элементарного куба решетки. Каждый ион Co окружен шестью ионами As. Кристаллохимическую формулу скуттерудита следовало бы писать так: Co4[As4]3.

Рис. 128. Кристаллическая структура скуттерудита.
Заштрихованы квадратные группы As4

Оказалось, что смальтин и хлоантит, относящиеся в настоящее время к никельскуттерудиту, обладают совершенно аналогичными кристаллическими структурами, несмотря на меньшее содержание мышьяка. Лишь размеры их элементарных ячеек оказываются несколько большими по сравнению со скуттерудитом.

Неудивительно поэтому, что физические и химические свойства всех этих минералов поразительно одинаковы. Чтобы не повторяться в изложении, ниже мы дадим общее описание минералов этой группы.

СКУТТЕРУДИТ — Co4[As4]3. Название дано по местности Скуттеруд (в Норвегии), где этот минерал был впервые найден. К разновидности, называемой смальтином (шмальтином), относятся экземпляры с дефицитом мышьяка и примесью никеля — (Co, Ni)As3–х, где х = 0–0,5; для них характерна зональность по составу.

НИКЕЛЬСКУТТЕРУДИТ (все еще гораздо более распространенный синоним — хлоантит) — Ni4[As4]3 – х, где х = 0–1. Хлоантес по-гречески — зеленящий, зеленеющий. Очевидно, имелось в виду окрашивание растворов в кислотах соединениями никеля в зеленый цвет или поводом к названию послужили зеленые продукты окисления этого минерала (аннабергит) в противоположность арсенидам кобальта, дающим вторичные минералы, окрашенные в розовый цвет (эритрин).

Химический состав непостоянен. Содержание отдельных компонентов колеблется в широких пределах (табл. 6).

Таблица 6. Химический состав минералов
группы скуттерудита в вес. %

Химическими анализами также устанавливается содержание Сu, Bi, иногда Рb и Ag. По всей вероятности, их присутствие обусловлено механическими примесями.

Сингония кубическая; дидодекаэдрический в. с. 3L24L33PC. Пр. гр. Im3(T 5h). Размер ячейки увеличивается с возрастанием содержания Ni, а также Fe. a0 = 8,189 (для скуттерудита), 8,24 (для смальтина), 8,28 (для никельскуттерудита). Облик кристаллов кубический, кубооктаэдрический или октаэдрический. Для поверхности кристаллов характерны черепитчатые, мозаично-блочные скульптуры граней, нередко с образованием искривленных ребер. Встречаются и в виде дендритовидных сростков, а также в сплошных зернистых агрегатах.

Цвет оловянно-белый, иногда с серой или радужной побежалостью. Черта серовато-черная. Блеск металлический.

Твердость 5,5–6. Хрупкие. Спайность по {100} и {111} заметная. Излом часто раковистый. Уд. вес 6,4–6,8. Проводят электричество.

Диагностические признаки. Определение этих минералов по внеш­ним признакам сопряжено с большими трудностями, особенно когда они находятся в тесном срастании с другими, похожими на них арсенидами никеля, кобальта и железа. По внешнему виду в сплошных массах они похожи на арсенопирит, лёллингит, герсдорфит, ульманит, саффлорит и раммельсбергит. Уверенного определения можно достигнуть лишь при изучении их в полированных шлифах под микроскопом, с помощью химических анализов, а также рентгенометрических исследований.

П. п. тр. плавятся в магнитный шарик, издавая сильный чесночный запах мышьяка. Разности, богатые кобальтом, разлагаясь в HNO3, при нагревании окрашивают раствор в розовый цвет, а никелевые разности — в желто-зеленый цвет.

Происхождение и месторождения. Все эти минералы встречаются в парагенезисе с другими арсенидами кобальта и никеля исключительно в гидротермальных месторождениях (типа Шнееберг и др.).

При выветривании за счет скуттерудита и шмальтина образуется эритрин (Co3[AsO4]2 . 8H2O) в виде примазок розового цвета, а за счет никельскуттерудита и хлоантита — ярко-зеленый аннабергит(Ni3[AsO4]2 . . 8H2O).

Скуттерудит вместе с другими минералами кобальта был встречен в Нижне-Сеймчанском месторождении (Колымский край). В месторождении Ховуаксы в Туве скуттерудит весьма распросранен, он как образует отдельные кристаллы и вкрапленники в доломитовых жилах, так и участ­вует в строении ритмично-зональных полиминеральных агрегатов почковидно-сферолитового строения в тесной ассоциации с раммельсбергитом, никелином и другими арсенидами и сульфоарсенидами.

Является обычным минералом в мышьяково-кобальтовом месторождении Ак-Джилга в Алайском хребте (Южная Киргизия) в ассоциации с глаукодотом, кобальтином, арсенопиритом, пирротином и другими минералами в кварцевых жилах. Среди месторождений стран дальнего зарубежья следует отметить Скуттеруд (Норвегия), где впервые был установлен скуттерудит в ассоциации с кобальтином и титанитом в оруденелых гнейсах; затем Кобальт в Онтарио (Канада), где, кроме скуттерудита и никельскуттерудита, встречались также хлоантит и смальтин в ассоциации с другими минералами кобальта, никеля и серебра; месторождения Рудных гор — Яхимов (Чехия), Шнееберг, Аннаберг (Саксония), Бу-Аззер (Марокко) и др.

Практическое значение. Вместе с другими арсенидами и сульфоарсенидами никеля и кобальта эти минералы встречаются иногда в значительных количествах и в таких случаях представляют несомненный промышленный интерес.


1 В последнее время установлены редко встречающиеся природные политипные модификации вюртцита с 4-, 6- и 15-слойными плотнейшими упаковками.