Курс минералогии

Глава 4. Образование минералов в природе

4.1. Общие положения

Образование и рост кристаллических фаз. Образование твердого кристаллического вещества может происходить различными путями: а) путем кристаллизации жидкостей (расплавов или растворов); б) путем отложения кристаллов на стенках пустот из газообразных продуктов возгона; в) путем замещения и перекристаллизации твердых масс (в част­ности, коллоидов). Главная масса природных кристаллических образований является результатом кристаллизации силикатных расплавов и водных растворов. Сюда относятся огромные массы изверженных кристаллических пород, подавляющее количество месторождений полезных ископаемых, кристаллические осадки соленосных бассейнов и др.

Кристаллизация любого охлаждающегося расплава теоретически долж­на начинаться при определенной температуре, отвечающей температуре плавления данного вещества. Точно так же и кристаллизация раствора должна начинаться в момент насыщения растворителя данным веществом. Однако, как показывает опыт, кристаллизация жидких фаз начинается при некотором переохлаждении или пересыщении1.

Степень переохлаждения или пересыщения жидкой среды зависит также от химического состава кристаллизующейся жидкости и до некоторой степени от давления. Изменение давления имеет более существенное значение при образовании кристаллов из охлаждающихся паров.

Процессы роста кристаллов в переохлажденном расплаве и в пересыщенном растворе совершенно одинаковы. Зарождение кристаллов может быть вынужденным (гетерогенная нуклеация), если в жидкости уже присутствуют обломки или пылинки каких-либо твердых веществ, могущих по своим кристаллохимическим свойствам играть роль затравок, или самопроизвольным, наступающим при отсутствии затравки в пересыщенных или переохлажденных растворах и расплавах (гомогенная нуклеация).

При самопроизвольной кристаллизации в разных точках расплава или раствора возникают так называемые центры кристаллизации, представленные кристаллическими зародышами. В первые моменты процесса кристаллизации (допустим, какой-либо однокомпонентной жидкости) во­круг этих центров кристаллизации в условиях свободного развития растут правильные кристаллики до тех пор, пока не создается стесненная обстановка для дальнейшего развития кристаллографических форм (рис. 39а, б). При продолжении кристаллизации начинается борьба за оставшееся пространство, и в конечном счете мы получим агрегат кристаллических зерен с неправильными внешними очертаниями (рис. 39в, г). В некоторых случаях удается даже наблюдать кристаллически-зональное строение отдельных зерен, свидетельствующее о постепенном их росте.

Рис. 39. Схема последовательной кристаллизации гомогенной жидкости

Установлена нелинейная зависимость между степенью переохлаждения или пересыщения жидкости и числом самопроизвольно возника­ющих в момент начала затвердевания центров кристаллизации, начиная с малых переохлаждений: чем сильнее переохлаждена или пересыщена жидкость, тем большее число центров кристаллизации возникает в данном объеме в единицу времени (рис. 40), следовательно, тем меньшими размерами будут обладать кристаллические зерна в результате окончательного затвердевания жидкости (рис. 41). Однако при увеличении степени переохлаждения скорость образования зародышей проходит через максимум и снижается.

Рис. 40. Зависимость скорости образования зародышей
(ΔN/Δt) от степени переохлаждения расплава (ΔT)

Рис. 41. Влияние числа центров кристаллизации на структуру агрегата:
а — крупнозернистый агрегат; б — мелкозернистый агрегат

Если кристаллизация начинается при сравнительно слабом пересыщении раствора, то при относительно небольшом числе возникших в этих условиях кристаллических зародышей образуются в конце концов сравнительно крупнозернистые агрегаты (рис. 41а). Если начало кристаллизации происходит при более сильном пересыщении (или переохлаждении), то, естественно, в результате мы будем иметь мелкозернистый агрегат кристаллических зерен (рис. 41б). В случаях кристаллизации раст­вора в условиях очень резкого пересыщения мы получим скрытокристаллические образования. Глубокое переохлаждение расплава приводит к образованию вулканических стекол.

Согласно экспериментальным данным, момент зарождения кристаллов в жидкости зависит от разных причин: от химической природы вещества; от примесей, ускоряющих или задерживающих появление кристаллических зародышей; от механических сил (сотрясения раствора, трения о стенки сосуда); иногда от действия звука, света и т. д.

Около растущих в свободной среде кристаллов, как показывают опыты, возникают концентрационные потоки: пересыщенный раствор в области соприкосновения с кристаллом отдает ему избыток растворенного вещества, становится легче и поднимается кверху, уступая место новым порциям пересыщенного раствора. Скорость роста кристаллов тем больше, чем сильнее пересыщен раствор.

Если условия роста для каждой грани растущего кристалла остаются постоянными с момента зарождения, то форма кристаллов по мере их роста не меняется, увеличиваются только их размеры. Однако скорость прироста различных граней кристалла в единицу времени часто бывает неодинакова, что в результате приводит к уменьшению числа граней. Установлено также, что на форму кристаллов оказывают значительное влия­ние растворенные примеси других веществ. Так, например, хлористый натрий обычно кристаллизуется в форме кубов, но из растворов, содержащих, кроме NaCl, также СаСl2 и MgSO4, выделяется в виде октаэдров.

При быстром росте кристаллов образуются неправильные формы. Главным образом это наблюдается в тех случаях, когда по тем или иным причинам нарушается равномерный приток питающего раствора (например, в средах с увеличившейся вязкостью, в коллоидальных растворах и др.). В этих случаях наибольшее питание получают вершины и ребра растущих кристаллов, т. е. участки кристаллических структур, наименее насыщенные валентностью. Это приводит иногда к искривлению граней с образованием воронкообразных углублений, а нередко к последовательному нарастанию кристалликов друг на друга (главным образом по вершинам). В результате образуются так называемые кристаллические скелеты, или дендриты, с определенным расположением ветвей в пространстве. Часто на концах таких ветвей наблюдаются утолщения и образование более крупных и более правильных кристаллических индивидов. Объясняется это, вероятно, тем, что во время кристаллизации вещества пересыщение раствора в прилегающих участках падает и наступают более нормальные условия для роста кристаллов.

Следует заметить, что кристаллы могут расти не только в жидких средах, т. е. за счет диффундирующих к кристаллу пересыщенных порций раствора, но также и в воздушной или газообразной среде при условии питания насыщенным раствором по капиллярным каналам. Об этом убедительно свидетельствует следующий опыт. Если в стакан с насыщенным раствором поваренной соли опустить хорошо смачивающуюся раствором хлопчатобумажную нить, то через некоторое время в условиях воздушной среды на нити образуются кристаллические агрегаты за счет раствора, поднимающегося под влиянием капиллярных сил вверх. В воздушной среде этот раствор за счет испарения воды подвергается сильному пересыщению, что и обусловливает кристаллизацию растворенного в нем вещества на хлопчатобумажной нити.

Нет никакого сомнения в том, что при медленном испарении растворителя таким путем могут возникнуть и хорошо образованные кристаллы. Многим, вероятно, известны также случаи роста из влажной почвы игл льда, наблюдаемых после ясных морозных ночей. Подобные же иглы вырастают в воздухе в результате медленного высыхания влажных порошков легкорастворимых в воде солей, например хлористого кальция. Весьма возможно, что встречающиеся в пустотах длинноигольчатые кристаллы многих минералов возникли этим путем.

Наконец, образование кристаллов может происходить в газообразной среде и без питания жидким раствором, т. е. в случаях перехода вещества из парообразного состояния сразу в твердое при соответствующих температурах (ниже температуры плавления) и давлениях. Примером может служить образование снежинок в виде звездчатых кристаллов в воздухе или различных минералов как продуктов возгона в районах вулканической деятельности.

Во многих случаях характерной особенностью кристаллов и кристаллических зерен является наличие в них мельчайших включений посторонних веществ (твердых, жидких, газообразных). Большей частью ими обусловливается мутность или непрозрачность кристаллов. Они легко обнаруживаются при рассматривании под микроскопом тонких пришлифованных пластинок. Лишь в непрозрачных минералах установление жидких и газообразных включений сопряжено с некоторыми трудностями.

Эти посторонние вещества, как показывает изучение их пространственного распределения, очевидно, механически захватывались кристаллом в процессе его быстрого роста. Они располагаются внутри него нередко вдоль определенных кристаллографических направлений. Таковы, например, включения вулканического стекла (затвердевших капелек магмы) в кристаллически-зональных плагиоклазах, или маточного жидкого раствора солей К, Na, Ca и др., или пузырьков газа, обычно в смеси с жидкостью, в мутных кристаллах кварца, кальцита, топаза и других минералов.

Любопытно, что газово-жидкие включения при нагревании при определенной температуре становятся обычно однородной жидкостью (газ растворяется в жидкости), а по охлаждении газовый пузырек вновь обособляется. Этим путем в ряде случаев можно приблизительно установить температуру, при которой шла кристаллизация минерала, захватывавшего мельчайшие капельки раствора.

В некоторых случаях в газово-жидких включениях наблюдается даже третья, твердая фаза (например, кристаллики NaCl). При нагревании эти кристаллики, как показал Н. П. Ермаков, растворяются в жидкости первыми, а затем исчезает и газовый пузырек.

Кроме первичных газово-жидких включений в кристаллах обнаруживаются также более поздние, вторичные включения, приуроченные к «залеченным» трещинкам в кристаллах (Г. Г. Леммлейн). Характерно, что во вторичных газово-жидких включениях исчезновение газового пузырька в капельках жидкости при нагревании наступает раньше, чем в первичных включениях. При дальнейшем нагревании в тех и других случаях происходит растрескивание кристаллической массы (столь сильное давление создается в жидких включениях).

Если какой-либо раствор, пропитывающий данную породу, взаимодействует с ней по реакции обменного разложения, то при этом, как правило, возникают новообразования за счет всей породы или некоторых составляющих ее минералов. Такой процесс носит название процесса замещения, или метасоматоза. Примерами могут служить замещение кальцита гипсом при реакции с водой, содержащей серную кислоту:

CaCO3 + H2O + H2SO4

= CaSO4 . 2H2O +CO2,

кальцит

гипс

или замещение сфалерита ковеллином при реакции с раствором сульфата меди:

ZnS + CuSO4

CuS + ZnSO4.

сфалерит раствор

ковеллин раствор

В случае избирательного метасоматоза (т. е. при замещении каких-либо определенных минералов породы) вновь образованный минерал, воспринявший внешнюю форму, а иногда и особенности внутреннего строения старого минерала, носит название метасомы. В частном случае, когда замещению подвергается какой-либо кристалл, мы будем иметь дело с псевдоморфозой, т. е. с чуждой для данного минерала кристаллической формой. При коллоидальном замещении опалом или сульфидами железа органических остатков, например древесины, нередко сохраняются все особенности их строения.

Наряду с этим в природе распространены случаи возникновения хорошо образованных кристаллов, развившихся путем метасоматоза в твердых средах (породах). Такие образования называются метакристаллами и известны лишь для некоторых минералов. Примером являются прекрасно образованные кубические кристаллы пирита в сланцах, мраморах и других породах. Метакристаллы часто содержат внутри остатки незамещенных минералов вмещающей породы. Они нередко возникают вдоль направлений тончайших, почти незаметных трещин в породах, что говорит о несомненно более позднем их образовании по сравнению с породой.

Процессы перекристаллизации и преобразования минералов, совершающиеся в твердых средах, происходят под влиянием существенного изменения физико-химических факторов равновесия систем, в частности в условиях так называемого регионального метаморфизма.

Растворение и разложение минералов. Уже указывалось, что многие минералы, после того как они образовались, под влиянием изменения внешних условий существования претерпевают те или иные превращения, иногда нацело растворяясь или разлагаясь с образованием нерастворимых продуктов химических реакций.

Начальные стадии растворения легко удается наблюдать на отдельных кристаллах, причем они характеризуются следующими явлениями:

1) если при росте кристалла вершины и ребра его имеют тенденцию к ускоренному развитию, то при растворении они обнаруживают наибольшую скорость перехода в раствор, благодаря чему кристалл приобретает как бы оплавленную форму;

2) если при росте кристалла наиболее устойчивыми являются медленно растущие грани, то при растворении появляются те грани, которые обладают наибольшими скоростями растворения;

3) медленно растущие грани обычно имеют блестящие гладкие поверх­ности; при растворении медленно растворяющиеся грани часто выглядят матовыми;

4) в начальные моменты растворения на гранях нередко образуются мельчайшие многогранные углубления, носящие название фигур травления.

Частичное или полное разложение минералов в природных условиях главным образом связано с процессами окисления и восстановления. Особенно это относится к минералам, в состав которых входят элементы, способные в естественных условиях образовывать несколько ионов разной валентности (например, Fe2+, Fe3+, Mn2+, Mn3+, Mn4+, S2–, S6+ и др.).

Если в минерале первоначально содержались катионы низшей валент­ности, то, попадая в окислительные условия (скажем, в зону выветривания горных пород и руд), они, естественно, будут стремиться перейти в ионы высшей валентности. При этом размеры катионов уменьшаются, что обычно приводит к разрушению кристаллической структуры. Например, в соединении FeS (пирротин) двухвалентный катион железа в условиях обогащения среды кислородом и водой легко превращается в трехвалентный катион с образованием труднорастворимых гидроокислов железа, тогда как двухвалентный анион серы окисляется до шестивалентного катиона с образованием комплексного аниона [SO4]2–, образующего с ионами водорода серную кислоту, переходящую в раствор. Таким образом, на месте пирротина возникает другое вещество, не имеющее с ним ничего общего по своим свойствам. Точно так же карбонат двухвалентного марганца (МnСО3) в этих условиях легко образует гидроокислы четырехвалентного марганца.

Если эти гидроокислы железа и марганца при геологических процессах попадают в глубинные условия в земной коре, где господствует восстановительная среда, высшие валентности катионов элементов нередко переходят в низшие, и этот переход сопровождается обезвоживанием соединений. В создавшихся условиях возникают новые минералы: гематит (Fe2O3) или магнетит (Fe2+Fe23+O4), браунит (Мn2+Мn4+О3), гаусманит (Мn2+Мn23+О4) и др.

В описательной части курса мы встретимся с многочисленными примерами этого рода.

Генерации минералов. Термин «генерация» в переводе с латыни означает поколение. Это слово точно передает смысл термина. Генерациями какого-либо минерала называют разновозрастные его выделения в данной минеральной ассоциации, отличающиеся по относительным размерам, внешнему виду или особенностям химического состава. Наблюдения над условиями нахождения минералов, особенно в рудных месторождениях, очень часто показывают, что существует несколько поколений одного и того же минерала, возникших в течение одной стадии процесса минералообразования. В одних случаях, как это показано на рисунке 42, более молодые поколения мелких кристаллов нарастают тут же, на более ранних и крупных по размерам, в других — они проявляются иначе, например в виде ранних крупных зерен и в виде поздних мелких выделений в тонких трещинах среди других минералов или мельчайших включений, устанавливаемых лишь под микроскопом, и т. д. Детальными микроскопическими исследованиями руд устанавливается, что почти каждый рудообразующий минерал имеет по несколько генераций, что указывает на сложность процессов рудообразования. Это обстоятельство важно иметь в виду при изучении парагенетических соотношений минералов2.

Рис. 42. Ромбоэдры второй генерации ориентированно нарастают
на скаленоэдр кальцита (автоэпитаксия).
Рисунок В. Макаренко из II выпуска альбома «Рисуя минералы...» (рис. 23)

Минеральные агрегаты. В результате кристаллизации и затвердевания раствора или расплава образуется смесь сросшихся между собой кристаллических зерен, которая носит название минерального агрегата.

Агрегаты бывают мономинеральными, т. е. состоящими из кристаллических зерен одного минерала (например, штуф мрамора или магнетитовой руды), и полиминеральными, представленными несколькими различными по составу и свойствам минералами (например, кусок гранита или медно-цинковой сульфидной руды).

По своему строению и морфологическим признакам минеральные агрегаты весьма разнообразны. Многие из них настолько типичны, что приобрели особые названия. Наиболее характерные морфологические особенности минеральных агрегатов обусловлены степенью кристалличности вещества. С этой точки зрения прежде всего существенно отличаются друг от друга две большие группы: 1) явнокристаллические агрегаты; 2) скрытокристаллические и колломорфные массы.

Перечислим главнейшие типы минеральных агрегатов.

1. Зернистые агрегаты, сложенные кристаллическими зернами, иногда в комбинации с хорошо образованными кристаллами каких-либо минералов. Этот тип агрегатов пользуется наибольшим распространением в земной коре. Примерами могут служить полнокристаллические изверженные породы, многие сульфидные и другие руды месторождений полезных ископаемых и пр.

По величине слагающих зерен различают: 1) крупнозернистые агрегаты — с размером зерен свыше 5 мм в поперечнике; 2) среднезернистые — с зернами 1–5 мм в поперечнике, легко различимыми невооруженным глазом; 3) мелкозернистые, размеры зерен которых меньше 1 мм.

Строение скрытокристаллических агрегатов может быть установлено лишь под микроскопом в тонких шлифах.

Форма слагающих зерен также накладывает свой отпечаток на морфологические особенности агрегатов. Если агрегат сложен зернами более или менее изотермической формы, то его называют просто зернистым. Если же зерна имеют пластинчатый облик, то такие агрегаты называют листоватыми или чешуйчатыми — в зависимости от размеров слага­ющих индивидов. Наконец, встречаются агрегаты, индивиды которых имеют вытянутую в одном направлении форму, иногда с радиальным расположением (рис. 43); они носят названия шестоватых, игольчатых, волокнистых агрегатов. Распространены также агрегаты, сложенные минералами различных форм, например, слюдяные сланцы с изометрическими кристаллами граната (рис. 44), зернистые массы кварца с шестоватыми кристаллами турмалина и др.

Рис. 43. Радиальный пучок кристаллов вивианита.
Рисунок В. Слетова и В. Макаренко из II выпуска альбома
«Рисуя минералы…» (рис. 30)

Рис. 44. Альмандин в мусковитовом сланце. Кольский полуостров

По степени заполнения пространства различают плотные и рыхлые зернистые агрегаты. Примером последних могут служить рыхлые кристаллические образования на дне усыхающих соляных озер.

2. Друзы представляют собой сростки хорошо образованных кристаллов, наросших на стенках каких-либо пустот. Примером могут служить часто встречающиеся друзы кристаллов кварца (рис. 45). Друзы интересны не только с кристаллографической точки зрения, но также потому, что в них нередко удается изучить последовательность выделения разных минералов, кристаллизовавшихся из по­следних порций растворов.

Рис. 45. Друза кристаллов кварца

Сам факт наличия в друзах хорошо образованных кристаллов свидетельствует о том, что они возникли в свободном пространстве, т. е. в каких-либо первичных пустотах, полых трещинах, раздробленных породах и т. д. Размеры пустот бывают самые различные, начиная с мелких пор и кончая пещерами, называемыми иногда «хрустальными погребами», в которых стенки усеяны крупными кристаллами прозрачного кварца и других минералов.

Такие минеральные образования, в которых кристаллические индивиды, тесно соприкасаясь, вытянуты более или менее параллельно друг другу, носят название гребенчатых, или щетковидных, агрегатов. Очевидно, кристаллы, зародившиеся на стенках полости, еще в начальные моменты роста вошли в соприкосновение друг с другом и в дальнейшем, в условиях стесненной обстановки, могли развиваться лишь в одном направлении, перпендикулярном к этим стенкам. К этой же категории образований относятся кристаллические корки, образованные мелкими, тесно сросшимися кристалликами, и щетки кристаллов.

Как показывает изучение, в этих случаях первоначально возникшие многочисленные кристаллические зародыши развивают свой рост в самых произвольных направлениях. Однако в процессе дальнейшего роста в борьбе за пространство постепенно выживает все меньшее и меньшее число кристаллических индивидов, причем преимущественно продолжают развиваться те из них, направление наибольшего роста которых близко к перпендикуляру к поверхности зарождения кристаллов («принцип геометрического отбора»). Если эта поверхность вогнутая, то возникают радиально сходящиеся лучистые минеральные агрегаты, а если выпуклая — радиально расходящиеся игольчатые или столбчатые кристаллические массы.

Образование радиально-лучистых агрегатов (сферолитов) нередко связано с непрекращающимся в процессе роста расщеплением зародившихся кристаллов, иногда сопровождаемым несколькими дополнительными зарождениями. При зарождении кристаллов на поверхности отдельных частиц геометрический отбор, зачастую также при участии процессов расщепления, приводит к образованию так называемых ядросферолитов. При кристаллизации расщепляющихся кристаллов на сложной поверхности образуются сферолитовые корки, при этом наблюдаются признаки геометрического отбора также между отдельными сферолитами (рис. 46).

Рис. 46. Сферолитовое строение почковидного агрегата гематита

3. Секреции образуются в результате заполнения пустот неправильной, обычно округлой формы кристаллическим веществом. Характерной особенностью многих секреций является последовательное концентриче­ски послойное отложение минерального вещества по направлению от стенок пустоты к центру. При этом отдельные слои нередко отличаются друг от друга по цвету и часто по составу.

Мелкие пустоты обычно нацело заполняются минеральным веществом. Иногда центральная часть бывает выполнена радиальноволокнистыми агрегатами какого-либо минерала, например цеолитов. В крупных же пустотах в центре нередко наблюдается полость, стенки которой устланы друзами кристаллов или натечными образованиями.

Мелкие секреции (до 10 мм в поперечнике) называются миндалинами, крупные — жеодами (рис. 47).

Рис. 47. Халцедоновая жеода с полостью, выполненной щетками кварца.
Рисунок В. Слетова из I выпуска альбома «Рисуя минералы...» (рис. 4)

4. Конкреции представляют собой шаровидные или не совсем правильной формы сферические стяжения и желваки (рис. 48), возникающие в рыхлых осадочных породах, главным образом в глинах, песках и землистых продуктах разрушения пород. Размеры конкреций колеблются в широких пределах — от нескольких миллиметров до десятков сантиметров, иногда до нескольких метров в поперечнике. Разрастаясь и соединяясь вместе, они образуют сложные по форме крупные тела.

Рис. 48. Кремневая конкреция.
Рисунок В. Слетова из I выпуска альбома «Рисуя минералы...» (рис. 2)

Часто, но не обязательн они возникают вокруг чужеродных тел, которыми во многих случаях являются органические остатки. В полированных разрезах песчанистых конкреций марказита и фосфорита бывает видно слоистое расположение песчинок, отвечающее слоистости самой породы. Этот факт говорит о том, что конкреции, по крайней мере отчасти, образуются после того, как породы сформировались. В изломе через центр они во многих случаях обнаруживают радиально-лучистое строение. Иногда наряду с этим наблюдается неясно выраженное концентрически-зональное строение минеральной массы.

Таким образом, конкреции по своему происхождению существенно отличаются от рассмотренных выше секреционных образований. В противоположность последним конкреции разрастаются вокруг какого-либо центра. Радиально-лучистое строение конкреций обязано своим появлением геометрическому отбору между отдельными кристаллическими индивидами.

Наиболее часто в виде конкреций встречаются фосфорит, пирит, марказит, иногда сидерит, барит и др.

5. Оолиты по способу образования во многом аналогичны конкрециям. Это такие же сферические образования, но малых размеров (от десятых долей миллиметра до 10 мм), возникающие в водных средах вокруг взвешенных посторонних тел — песчинок, обломков органических остатков и даже пузырьков газа. Характерной особенностью оолитовых стяжений является их явно выраженная, довольно правильная концентрическая слоистость, иногда скорлуповатость. Аналогичные по форме, но не обладающие концентрической слоистостью образования называют псевдоолитами (бобовинами).

Образование современных известковистых оолитов происходит в движущейся воде во взвешенном состоянии, причем по мере достижения определенных размеров они падают на дно. Осадочные породы, состо­ящие из сцементированных оолитовых стяжений, в зависимости от размеров носят название гороховых камней.

6. Так называемые натечные формы минеральных образований, как и друзы кристаллов, наблюдаются в пустотах, в том числе в естественных пещерах. Ранее предполагалось, что они появляются в результате кристаллизации коллоидов. Такие агрегаты практически всегда обнаруживают сферолитовое или микросферолитовое строение, они наблюдаются в виде сталактитовых или псевдосталактитовых (рис. 49), почковидных, гроздевидных и прочих форм (рис. 50). В нижних частях пустот за счет падающих капель возникают поднимающиеся кверху конусообразные сталагмиты, наблюдающиеся, впрочем, не для всех минеральных образований. Образование натечных форм в подавляющем большинстве случаев связано с массовой кристаллизацией из истинных растворов, сопровождаемой расщеплением и геометрическим отбором индивидов. Разнообразие получающихся агрегатов связано с различиями в скоростях зарождения и в режиме роста индивидов, определяемыми характером контакта поверхности подложки и растущих кристаллов с жидкими средами в различном состоянии (пленочные, капельные или застойные растворы, ламинарные или турбулентные потоки растворов и т. п.). Псевдосталактиты возникают, по всей вероятности, путем зарождения и кристаллизации сферолитовых корок на гибких коллоидных трубках в водной среде.

Рис. 49. Псевдосталактиты халцедона в жеоде. Рисунок В. Слетова и В. Макаренко
из II выпуска альбома «Рисуя минералы...» (рис. 21)

Рис. 50. Геликтиты кальцита из карстовой пещеры.
Рисунок В. Слетова из II выпуска альбома «Рисуя минералы...» (рис. 7)

Размеры таких образований могут быть самыми различными, начиная от микроскопических и кончая толстыми столбообразными сталактитами и сталагмитами арагонита и кальцита (Са[СО3]) в больших пещерах.

В подобных формах могут встречаться самые различные минералы: гидроокислы железа (лимонит, гетит), гидроокислы марганца (псиломеланы), опал, малахит, гипс, арагонит, кальцит, сульфиды разных металлов и др.

Как показывает изучение натечных образований в полированных образцах, они очень часто характеризуются концентрически-зональным строением (в поперечных разрезах). Это строение обусловливается чередованием зон, состоящих либо из одного и того же минерала, но различной окраски или с различными физическими свойствами (малахит, лимонит и др.), либо, что гораздо реже, из различных по составу минералов (например, лимонит, халцедон и малахит, лимонит и самородная медь и др.). Различия в минеральном составе отдельных концентрических слоев свидетельствуют об изменении состава притекавших растворов в процессе роста.

7. Землистые массы, как показывает само название, представляют собой мягкие мучнистые образования, в которых невозможно различить даже с помощью лупы какие-либо кристаллические образования. Обычно мы их наблюдаем в виде корок или скоплений, возникающих чаще всего при химическом выветривании руд и горных пород. В зависимости от цвета такие массы иногда называют сажистыми (образования черного цвета) или охристыми (скопления и корки желтого и бурого цвета).

Таковы, например, землистые минеральные образования различной окраски гидросиликатов никеля, сажистые образования гидроокислов марганца, охристые образования гидроокислов железа и другие остаточные продукты выветривания.

8. Налеты и примазки, встречающиеся иногда в виде тонких пленок на поверхности кристаллов, могут представлять собой различные по составу вещества. К их числу можно отнести, например, тонкие пленки бурых гидроокислов железа на кристаллах горного хрусталя, примазки медной зелени и сини в горных породах, вмещающих медные месторождения, и др.

9. Выцветами называют обычно периодически появляющиеся на поверхности руд, горных пород, сухих почв и в трещинах рыхлые пленки и корочки или спорадически рассеянные моховидные и пушистые образования каких-либо солей, чаще всего легкорастворимых водных сульфатов. В дождливые периоды года они, как правило, исчезают, а в сухую погоду вновь появляются.

К этому же типу образований следует отнести довольно часто наблюдающиеся дендритоподобные выделения гидроокислов марганца на поверхности пород вдоль тонких трещин (рис. 51).

Рис. 51. Дендриты гидроокислов марганца

10. Кольца и спирали Лизеганга. Под этим термином подразумевают ритмически перемежающиеся полосчатые образования, явля­ющиеся результатом периодического осаждения каких-либо соединений при диффузии в микропористых средах, очень похожие на те, что получал Р. Лизеганг в виде концентриче­ских колец или спиралей. Сущность его опыта сводилась к тому, что во­круг капли AgNO3 на желатине, пропитанном К2Сr2О7, при диффузии раствора в процессе реакции возникали микроскопические кристаллики Ag2Cr2O7, которые первоначально двигались вместе с раствором, но затем, по мере роста, задерживались в порах желатина, будучи не в состоянии двигаться дальше из-за своих размеров, и потому периодически осаждались в виде концентрических колец. Очень похожие образования возникают в тонкопористых породах при процессах выветривания. Таковы, например, ритмические кольца, полосы, гиперболы, окрашенные бурыми гидроокислами железа, в известняках, песчаниках и других породах. Здесь периодическое выпадение вещества, очевидно, совершается из золей в виде геля при критической концентрации дисперсной фазы или электролита. Если при этом одновременно происходит выщелачивание породы, то в конечном результате мы будем иметь концентрически-скорлуповатые образования, в которых полосы плотного геля перемежаются с землистыми участками.

В некоторых случаях вместо колец или спиралей возникают древовидные образования. Таковы, например, выделения гидроокислов железа или марганца в опале («моховые» агаты). Искусственно они также легко воспроизводятся в желатиновой среде.

Парагенезис минералов3. Этот термин, понимавшийся как «совместное нахождение минералов», был введен в геологическую литературу в 1849 г. Брейтгауптом. Однако впервые, задолго до этого (в 1798 г.), то же понятие под названием «смежность минералов» было предложено нашим русским ученым В. М. Севергиным. В 1923 г. В. И. Вернадский предложил назвать совместное нахождение минералов в одном и том же минеральном теле минеральной ассоциацией в отличие от термина «парагенезис», которому он придал другой смысл.

Он подчеркнул, что начала этого учения связаны еще с наблюдениями древних рудокопов, искавших спутники металлических руд и драгоценных камней. «Они первые, не зная того, изучали минеральные ассоциации». Давно было установлено, например, что галенит (PbS), с которым часто связано серебро, как правило, встречается совместно со сфалеритом (ZnS). Точно так же широко распространены месторождения, в которых золото ассоциирует с кварцем, киноварь (HgS) — с антимонитом (Sb2S3) и т. д. В настоящее время в этой области накопился огромный эмпирический материал, оказывающий большую помощь при проведении поисково-разведочных работ.

«Парагенезисом» Вернадский назвал «все минеральные ассоциации, известные для какого-нибудь минерала или химического элемента», для чего предлагал учитывать минеральные тела, в которых данный минерал встречается, минеральные ассоциации и генерации (История минералов земной коры. 1923. Т. 19. С. 153). К сожалению, Вернадский не привел конкретных примеров, которые иллюстрировали бы это положение. Однако в другом месте своей работы он указал на необходимость «изучения закономерностей сочетания минералов — их парагенезиса» (Там же. С. 11). В таком понимании эта задача приобретает особый интерес в минералогии.

Богатейший минералогический материал, полученный при детальном изучении разнообразных горных пород и руд, позволил значительно углубить исследования в этом направлении. Минералоги выяснили, что при процессах минералообразования в зависимости от физико-химических условий и взаимодействия растворов с окружающей средой на каждой стадии развития этих процессов возникают определенные парагенетиче­ские ассоциации как совместно образовавшиеся группы минералов в данном минеральном теле. Характерно, что каждая такая группа отражает свои условия образования минералов. Для ясности остановимся на следующем простом примере.

Нередко в одном и том же штуфе руды среди совместно наблюдаемых минералов устанавливаются две или несколько различных по времени образования и происхождению групп минералов. Например, лимонит (гидроокислы железа) и малахит (карбонат меди) часто наблюдаются совмест­но с полуразрушенными сульфидами меди и железа (например, пиритом (FeS2) и халькопиритом (CuFeS2)). Однако геологические данные всегда показывают, что сульфиды образовались раньше в одних условиях, а более поздние гидроокислы железа и карбонат меди — в совершенно другой обстановке (в условиях выветривания) и пространственно связаны с первыми лишь по источнику входящих в них химических элементов (железа и меди). Следовательно, в данной минеральной ассоциации мы имеем две различные по условиям образования группы минералов.

При таком подходе к изучению ассоциации минералов выявляются чрезвычайно важные как в научном, так и в практическом отношении закономерности смены парагенетических ассоциаций минералов во времени, свидетельствующие об изменении физико-химических условий в историческом ходе минералообразования. Советскими учеными был разработан геометрический метод анализа наблюдающихся в природе различных сочетаний минералов, позволяющий вскрывать многие детали и факты, которые при обычных методах наблюдения ускользают от исследователя.

Знание типических парагенетических ассоциаций имеет большое значение в минералогии. Оно не только помогает определять совместно встречающиеся минералы, но также оказывает большую услугу при поисках полезных ископаемых. Например, если в основных, обогащенных магнезией изверженных породах мы встречаем такие более или менее легко устанавливаемые по внешним признакам минералы, как пирротин (FeS) и халькопирит (CuFeS2), то мы обязательно должны искать третий, трудно диагностируемый, но очень важный в промышленности никелевый минерал — пентландит, который в этих породах встречается как совместно с ними образовавшийся минерал.

Нужно указать, что в природе наблюдаются самые разнообразные парагенетические ассоциации минералов. Это обусловлено не только первоначальным составом кристаллизующихся растворов или реагирующих с ними окружающих горных пород, но также температурой, давлением или глубиной в земной коре, на которой происходит образование или преобразование минералов, и другими факторами. При этом одни минералы могут возникать только при определенных значениях внешних факторов, другие, наоборот, образовываются при различных процессах минералообразования. Так, гипс (Ca[SO4] . 2H2O) в одних случаях нередко встречается в ассоциации с хлористыми и сернокислыми солями в пластовых соляных залежах, образовавшихся в результате усыхания соляных рассолов в озерных бассейнах и лагунах. В других случаях он наблюдается как продукт химического выветривания горных пород (в областях с малым количеством осадков) в ассоциации с гидроокислами железа и глинистыми продуктами разрушения, причем, как показывают горные выработки, он довольно быст­ро исчезает с глубиной. Описаны случаи нахождения гипса в виде кристаллов в трещинах, среди разложенных и обесцвеченных лав и изверженных горных пород, около сольфатар (парообразных сернистых выделений в районах вулканической деятельности), где гипс мог образоваться за счет известковистых минералов вмещающих пород под действием горячих вод, содержащих серную кислоту, и т. д.

Разнообразие парагенетических ассоциаций минералов часто осложняется тем, что во многих случаях на данную группу совместно образовавшихся минералов, связанных с одним процессом, накладываются минеральные ассоциации, обязанные своим происхождением другому процессу, причем новообразования нередко частично развиваются за счет ранее образовавшихся минералов. Поэтому и важно в подобных случаях раздельно учитывать различные по происхождению группы совместно образовавшихся минералов, так как для каждого процесса минералообразования, естественно, существуют свои закономерности сочетаний минералов. Сам факт наложения нового процесса минералообразования свидетельствует об изменившихся физико-химических условиях равновесия минеральных фаз. Это нередко приводит к тому, что по крайней мере часть ранее образовавшихся минералов оказывается неустойчивой в новых условиях и подвергается соответствующим изменениям или замещению новыми минералами.

Что касается характерных ассоциаций химических элементов в отдельных минералах, то этот вопрос для кристаллических тел решается целиком на основе законов кристаллохимии. Сочетание разнородных элементов в кристаллических структурах, как известно, обусловливается химическими особенностями, связанными со строением атомов или ионов, их размерами и свойствами. Замена одних атомов и групп атомов другими также зависит от их размеров, а в ионных соединениях, кроме того, соблюдается условие, чтобы суммарные положительная и отрицательная валентности были уравновешены.

Типоморфные признаки минералов. Давно уже обращалось внимание на то, что некоторые минералы обладают типичными формами кристаллов, свойственными какому-либо данному типу месторождений или данной горной породе. Например, кальцит (Са[СО3]), встречающийся в виде кристаллов обычно в пустотах, в одних месторождениях наблюдается в характерных скаленоэдрических формах, в других — в виде крупных тупых или острых ромбоэдров, в третьих — в пластинчатых кристаллах, в четвертых — в виде мелких шестоватых кристалликов и т. д. Делались попытки увязать эти различные формы кристаллов с температурой их образования. Однако в конце концов выяснилось, что вообще на морфологию и размеры кристаллов влияет не только температура, но и концентрация компонентов в растворах, наличие тех или иных растворенных примесей в них и степень пересыщения растворов.

В настоящее время к типоморфным признакам минералов относят не только форму кристаллов, но и какие-либо типические признаки минералов вообще, например цвет, примеси в составе минералов тех или иных химических элементов (типохимизм), типы двойников и т. д. Несомненно, что эти характерные для того или иного месторождения признаки связаны с особенностями состава растворов, из которых кристаллизовались минералы, температурой, давлением и другими условиями минералообразования. Приведем несколько примеров.

Было подмечено, что касситерит (SnO2) из высокотемпературных, так называемых пегматитовых образований (в отличие от гидротермальных месторождений) в виде примесей часто содержит такие металлы, как ниобий, тантал, железо и др. Поэтому в случае нахождения его при поисках в виде окатанных зерен в рыхлых отложениях логов или речных долин по особенностям его состава мы можем примерно судить о том, какого типа месторождения явились его источником.

Установлено также, что крупные кристаллы кварца из так называ­емых жил альпийского типа, в отличие от других месторождений, характеризуются некоторыми особенностями кристаллических форм, определенным парагенезисом минералов и присутствием относительно крупных монокристальных блоков внутри кристаллов, сдвойникованных обычно по дофинейскому закону.

Для самородного золота характерно, что оно наиболее богато серебром (в виде изоморфной примеси) в тех месторождениях, которые образовались в близповерхностных условиях в земной коре, т. е. в условиях относительно низких давлений и температур. Серебристое золото (электрум) отличается от обычного самородного золота и по физическим свойствам: обладает несколько меньшим удельным весом и более светлым желтым цветом. В парагенезисе с ним часто встречаются сернистые соединения серебра: аргентит (Ag2S), прустит (Ag3AsS3) и др.

Для подавляющего большинства рудных месторождений, характеризующихся сложными условиями происхождения, наблюдается большое разнообразие этих признаков, что требует весьма детальных исследований для установления истинных закономерностей, на основании которых можно было бы сделать достоверные выводы. Детальное минералогическое картирование, проведенное к настоящему времени на большом ряде рудных месторождений различного генезиса, позволило выделить целые комплексы типоморфных признаков минералов, на основании которых удается предсказывать масштабы месторождений, глубину эрозионного среза и перспективы обнаружения богатого оруденения на глубоких горизонтах.

4.2. Геологические процессы минералообразования

Для выяснения условий генезиса (происхождения) какого-либо данного комплекса минералов важно не только установить способ их образования, но также увязать его с теми геологическими процессами, которые совершаются в земной коре и приводят к образованию самых различных по составу горных пород и руд месторождений полезных ископаемых. Эти вопросы детально освещаются в специальных курсах петрографии и учения о месторождениях полезных ископаемых. Здесь мы приведем лишь самые общие положения по этим вопросам, поскольку в дальнейшем это будет необходимо при описании отдельных минералов.

Все минеральные массы, возникшие в результате тех или иных геологических процессов, по источнику энергии, за счет которой они происходили, делятся на следующие две главные генетические группы:

1) эндогенные (изнутри рожденные), образующиеся при процессах, протекающих за счет внутренней тепловой энергии земного шара; минералы, возникающие в результате этих процессов, являются продуктами магматической деятельности (в широком смысле слова), горные породы и месторождения полезных ископаемых образуются в результате кристаллизации самой магмы и различных отщеплений от нее; процессы минералообразования протекают на различных глубинах и при различных, но обычно высоких температурах;

2) экзогенные (извне рожденные), возникающие при процессах, совершающихся за счет внешней солнечной энергии, получаемой поверхностью земного шара, источником вещества являются обнажившиеся и разрушающиеся на поверхности Земли разнообразные породы и руды различного происхождения; процессы минералообразования развиваются в самой поверхностной части земной коры при низких температурах и давлениях, близких к атмосферному, в условиях взаимодействия физических и химических агентов атмосферы, гидросферы и биосферы.

Как эндогенные, так и экзогенные минеральные массы после своего образования при изменившихся внешних условиях существования претерпевают те или иные превращения (метаморфизм). Особенно сильные превращения в составе и строении минеральных масс происходят при так называемом региональном метаморфизме, когда массы горных пород и связанные с ним месторождения вследствие тектонических нарушений попадают из областей их первоначального образования в более низкие зоны земной коры. Эти процессы глубинного метаморфизма совершаются в условиях относительно высоких температур и давлений и пользуются весьма широким распространением в земной коре.

Эндогенные процессы минералообразования

Наши знания об эндогенных процессах минералообразования основываются на представлениях о деятельности магматических очагов, располагающихся в нижних частях земной коры. Сами процессы, совершающиеся на значительных глубинах, недоступны нашему наблюдению. Лишь в районах действующих на земной поверхности вулканов мы можем получить некоторые данные, позволяющие иметь суждение о глубинных процессах. С другой стороны, данные изучения состава, структурных особенностей, условий залегания и взаимоотношений различных изверженных пород и пространственно связанных с ними месторождений полезных ископаемых также дают возможность получить некоторые представления (в соответствии с физико-химическими законами) о закономерностях, свойственных эндогенным процессам минералообразования.

Согласно этим представлениям, магмы являются сложными по составу силикатными огненно-жидкими расплавами, в которых принимают участие и летучие составные части.

В тех случаях когда значительные массы магмы в силу тех или иных причин, не достигая самой поверхности, проникают в верхние части земной коры, они под большим внешним давлением подвергаются медленному остыванию и дифференциации, продукты которой в результате кристаллизации дают начало различным изверженным силикатным породам. При этом тяжелые металлы (такие как Sn, W, Mo, Au, Ag, Pb, Zn, Сu и др.), присутству­ющие в магмах в ничтожных количествах, образуют с летучими компонентами (Н2О, S, F, Cl, В и др.) легко растворимые соединения и по мере кристаллизации магмы концентрируются в верхних частях магматических очагов. В одних случаях с их помощью образуются остаточные силикатные растворы, при кристаллизации которых возникают так называемые пегматиты, содержащие минералы с F, В, Be, Li, Zr, а иногда с редкоземельными элементами и др. В других случаях они в виде газообразных продуктов удаляются из магматических очагов, оказывая сильные контактные воздействия на вмещающие породы, с которыми вступают в химические реакции. Наконец, в виде водных растворов — гидротерм — они уносятся вдоль трещин в кровлю над магматическими массивами, образуя нередко богатые месторождения главным образом металлических полезных ископаемых.

Лишь немногие тяжелые металлы остаются в магме и в процессе ее дифференциации концентрируются в некоторых горных породах внутри магматических массивов.

В тех случаях когда магма достигает земной поверхности и изливается в виде лав, летучие компоненты, освобождающиеся при этом, уходят в атмосферу.

В соответствии с указанной последовательностью развития магматического цикла явлений различают следующие этапы эндогенных процессов минералообразования: 1) магматический (в собственном смысле слова); 2) пегматитовый; 3) пневматолито-гидротермальный.

1. Магматические процессы совершались во все геологические эпохи и приводили к образованию огромных масс изверженных горных пород.

По условиям образования различают прежде всего две главные группы этих пород: а) эффузивные (экструзивные), т. е. излившиеся на земную поверхность в виде лав или быстро застывшие в непосредственной близости ее в условиях низкого внешнего давления; б) интрузивные, медленно застывшие на глубине под высоким давлением в виде больших грибообразных, пластообразных и неправильной формы массивов. Эффузивные породы при быстром остывании не успевают полностью раскристаллизоваться и потому в своем составе содержат в том или ином количестве вулканическое стекло и часто обильные округлые пустоты (в пузыристых лавах), свидетельствующие о выделении газообразных продуктов вследствие резкого уменьшения внешнего давления. Интрузивные породы, наоборот, представляют собой полнокристаллические породы.

Явления дифференциации в магмах, как было указано, приводят к образованию различных по химическому и минеральному составу и удельному весу горных пород. В зависимости от содержания кремнезема и других компонентов среди изверженных пород различают:

а) ультраосновные, богатые MgO и FeO, но наиболее бедные SiO2 (< 45 %): дуниты, пироксениты — в интрузивных и пикриты — в эффузивных комплексах;

б) основные, более богатые SiO2 (45–55 %) и богатые Аl2О3 и CaO, но более бедные MgO, FeO; габбро, нориты — в интрузивных и базальты и диабазы — в эффузивных комплексах;

в) средние по содержанию SiO2 (55–65 %), более бедные CaO, но обогащенные щелочами: диориты, кварцевые диориты — в интрузивных, порфириты, андезиты и др. — в эффузивных комплексах;

г) кислые, богатые SiO2 (> 65 %), но еще более богатые щелочами и более бедные по сравнению с предыдущими CaO, FeO, MgO: гранодиориты, граниты и другие породы — в интрузивных; липариты, кварцевые порфиры и прочие породы — в эффузивных комплексах.

На рисунке 52 представлены данные содержаний элементов в виде различных окислов для главнейших представителей интрузивных пород. На этой диаграмме легко видеть, как меняется состав ультраосновных, основных среднекислых и кислых изверженных горных пород.

Рис. 52. Диаграмма составов главнейших интрузивных пород

Несколько особняком от них стоит семейство бескварцевых нефелиновых сиенитов (SiO2 около 55 %), более богатых щелочами и Аl2О3, чем граниты, а также фонолитов, лейцитофиров и других эффузивных комплексов.

В ряде интрузивных массивов, где дифференциация магмы проявилась более совершенно, кислые разности пород располагаются в верхних частях, а более тяжелые по удельному весу основные и ультраосновные породы — в более глубоких частях, у нижней границы массивов.

Рудные месторождения магматического происхождения встречаются лишь в ультраосновных и основных изверженных породах. К ним принадлежат месторождения Cr, Pt и других металлов платиновой группы, а также Сu, Ni, Co, Fe, Ti и др.

В богатых щелочами интрузивных породах (нефелиновых сиенитах) встречаются месторождения редких земель — ниобия, тантала, титана, циркония, и неметаллических полезных ископаемых — фосфора (апатита), глиноземного сырья (нефелина) и др.

2. Процессы образования пегматитов протекают в верхних краевых частях магматических массивов и притом в тех случаях, когда эти массивы формируются на больших глубинах (несколько километров от поверхности Земли) в условиях высокого внешнего давления, способству­ющего удержанию в магме в растворенном состоянии летучих компонентов, реагирующих с ранее выкристаллизовавшейся породой.

Пегматиты как геологические тела4 наблюдаются в виде жил или неправильной формы залежей, иногда штоков, характеризующихся необычайной крупнозернистостью минеральных агрегатов. Мощность жилообразных тел достигает нередко нескольких метров, а по простиранию они обычно прослеживаются на десятки, реже сотни метров. Большей частью пегматитовые тела располагаются среди материнских изверженных пород, но иногда встречаются в виде жилообразных тел и во вмещающих данный интрузив породах.

Необходимо указать, что пегматитовые образования наблюдаются среди интрузивных пород самого различного состава, начиная от ультраосновных и кончая кислыми. Однако наибольшим распространением пользуются пегматиты в кислых и щелочных породах. Пегматиты основных пород не имеют практического значения.

По своему составу пегматиты немногим отличаются от материнских пород: главная масса их состоит из тех же породообразующих минералов. Лишь второстепенные (по количеству) минералы, да и то не во всех типах пегматитов, существенно отличаются по составу, так как содержат ценные редкие химические элементы, часто в ассоциации с минералами, содержащими летучие компоненты. Так, например, в гранитных пегматитах в дополнение к главнейшим породообразующим минералам (полевые шпаты, кварц, слюды) наблюдаются фтор- и борсодержащие соединения (топаз, турмалины), минералы бериллия (берилл), лития (литиевые слюды), иногда редких земель, ниобия, тантала, олова, вольфрама и др.

Во многих пегматитовых телах наблюдается зональное строение и довольно закономерное распределение минералов. Например, в пегматитах Мурзинского района на Урале (рис. 53) внешние зоны у контакта с вмещающими гранитами сложены светлой тонкозернистой породой (аплитом). Ближе к центральной части жилы они сменяются зонами «письменного гранита» (кварца и полевого шпата, закономерно проросших друг в друга). Далее следуют зоны гигантокристаллических масс полевого шпата и кварца. В центральных участках пегматитовой жилы встречаются полости («занорыши»), стенки которых устланы друзами крупных, хорошо образованных кристаллов горного хрусталя, топаза и других драгоценных камней.

Рис. 53. Строение пегматитовой жилы Мурзинка (Средний Урал)
(по А. Е. Ферсману). 1 — гранит; 2 — зона аплита;
3 — графическая зона («письменный гранит»);
4 — гигантокристаллические массы полевого шпата и кварца;
5 — «занорыш» (полость с друзами кристаллов)

В тех случаях, когда пегматиты проникают во вмещающие интрузив породы, особенно богатые щелочными землями (MgO, CaO), их минеральный состав существенно отличается от состава пегматитов, залегающих в материнских породах. Парагенезис минералов в этих случаях указывает на активные реакции, происходившие в процессе взаимодействия растворов с вмещающими породами. Устанавливаются такие ассоциации минералов, в составе которых участвуют элементы не только магмы (Si, Al, щелочи и др.), но и боковых пород (MgO и CaO), которые на контакте с пегматитами сами сильно изменяются. Такого рода пегматиты по классификации А. Е. Ферсмана относятся к пегматитам «линии скрещения» в отличие от вышерассмотренных пегматитов «чистой линии».

Происхождение пегматитов еще нельзя считать до конца разгаданным. А. Е. Ферсман рассматривал их как продукт кристаллизации остаточных расплавов, обогащенных летучими соединениями. Позже акад. А. Н. Заварицкий и его последователи на основании физико-химических соображений допускали возможность образования крупнокристаллических масс путем перекристаллизации материнских пород под влиянием газов, накапливающихся в магматическом остатке, получающемся в процессе кристаллизации магмы. Однако в том и другом случаях пегматиты образуются в конце собственно магматического процесса и занимают как бы промежуточное положение между глубинными магматическими породами и рудными гидротермальными месторождениями.

3. Пневматолито-гидротермальные процессы по существу являются уже явно постмагматическими, т. е. протекают после того, как главный процесс кристаллизации магмы в глубинном массиве в основном закончился.

Явления собственно пневматолиза (от греч. пневма — газ) могут иметь место в тех случаях, когда расплавы, насыщенные летучими компонентами, кристаллизуются в условиях пониженного внешнего давления. Вследствие этого в известный момент происходит вскипание, остаточная жидкость переходит в газ, сосуществующий с ранее выделившимися твердыми минералами, и происходит дистилляция (перегонка) вещества. Процессы этого рода должны совершаться в тех случаях, когда магмы застывают на малых глубинах.

На больших и средних глубинах отделяющиеся от расплава летучие компоненты (включая воду) представляют собой флюид (надкритиче­ский раствор), находящийся в относительном равновесии с кристаллизующимися из расплава минералами. Однако такой флюид не равновесен со вмещающими породами и поэтому является по отношению к ним агрессивной средой. В этом случае флюид устремляется к вмещающим породам и, химически реагируя с ними, производит так называемый контактовый метасоматоз. При этом в боковых породах (в кровле), пропитывающихся растворами, протекают химические реакции. Степень преобразования и состав получающихся продуктов в значительной мере зависят не столько от температуры, сколько от химической активности раствора и состава реагирующих с ними пород. Наблюдениями установлено, что наиболее интенсивные изменения происходят среди контактирующих с магматическими массивами известняков и других известковистых пород. В результате реакций в этих случаях путем замещения, или, как говорят, метасоматоза, образуются так называемые скарны (рис. 54), состоящие преимущественно из силикатов Са, Fe, Аl и др. Химический состав их показывает, что источником для их образования послужили как вмещающие породы (известняки, доломиты и др.), так и составные части магмы. Характерно, что вдоль контакта, как это показали наши ученые (А. Н. Заварицкий и Д. С. Коржинский), одновременно происходит изменение и в интрузивных породах, успевших застыть к моменту проявления описываемого процесса. При этом минералы магматических пород замещаются новообразованиями, состав которых показывает, что имеет место привнос элементов из карбонатных толщ (Са, Mg). В связи со скарнами нередко образуются крупные месторождения железа (гора Магнитная на Южном Урале), иногда вольфрама, молибдена и некоторых других металлов.

Рис. 54. Схема геологического разреза контактово-метасоматического месторождения.
Черным показаны рудные залежи (магнетитовые руды)

Воздействие обогащенных фтором и редкими элементами флюидов на сложенные терригенными осадочными породами кровли гранитоидных интрузий приводит к образованию грейзенов, существенно кварцевых пород, обогащенных слюдами, топазом, бериллиевыми минералами и флюоритом. Грейзены нередко вмещают руды вольфрама, молибдена, олова и висмута.

В том случае когда магмы извергаются на земную поверхность, огромные количества летучих соединений (в виде так называемых эксгаляций) выносятся в атмосферу. Однако в трещинах остывших лав, на стенках кратеров вулканов и в окружающих других породах часто можно наблюдать образование продуктов возгона (сублимации) таких минералов, как самородная сера, нашатырь, гематит, киноварь, минералы бора и др. Отмечаются и метасоматические реакции, но они выражены слабее, чем в предыдущем случае.

Струи газообразных продуктов вулканизма могут отлагать значительные количества минерального вещества и при подводных извержениях. В этих условиях смешение газов с морской водой приводит к пневматолито-гидротермальному образованию конических сульфидных построек (черных курильщиков), содержащих заметные концентрации железа, цинка, меди и серебра.

Гидротермальные процессы в глубинных условиях развиваются в кровле, на некотором удалении от непосредственного контакта с изверженными породами. Согласно гипотезе У. Эммонса (ок. 1930), кислая магма является источником как воды гидротермальных растворов, так и металлов, переносимых в раст­воренной форме из магматического очага в области рудоотложения. Остаточные надкритические раст­воры (флюиды), используя для своего продвижения системы трещин, возникающих при внедрениях магмы в кровле магматических очагов (рис. 55), постепенно охлаждаются и при температурах от 400 до 370 °С сжижаются, превращаясь в горячие водные растворы — гидротермы.

Рис. 55. Общая схема расположения гидротермальных образований.
Крестика ми показаны изверженные породы

Наиболее благоприятные условия для проявления гидротермальных процессов создаются на малых и средних глубинах (3–5 км от поверхности). Главная масса гидротермальных образований пространственно и генетически связана с интрузивами кислых пород (гранитов, гранодиоритов и др.). Сфера циркуляции раствора, начинаясь почти от верхних частей магматических очагов, достигает иногда дневной поверхности. В районах проявления недавнего вулканизма до сих пор действуют горячие минерализованные источники, отлагающие кремнистые осадки с весомыми количествами сернистых соединений Hg, Sb, As, Pb, Cu и др. (Стимбот-Спрингс в Неваде, Сольфор-Бэнк в Калифорнии и др.).

По мере удаления от магматических очагов в сторону земной поверхности гидротермальные растворы встречают среду, постепенно обогаща­ющуюся кислородом; при этом внешнее давление соответственно падает; температуры снижаются предположительно от 400 до нескольких десятков градусов. Эти факторы, естественно, влияют на ход химических реакций и на минеральный состав гидротермальных образований. По преобладанию тех или иных ассоциаций минералов эти образования совершенно условно делят на высоко-, средне- и низкотемпературные. Это, конечно, не означает, что среди высокотемпературных образований не могут встречаться ассоциации минералов, кристаллизующихся при низких температурах. Даже в пегматитах и контактово-метаморфических образованиях всегда устанавливаются более низкотемпературные минералы гидротермального происхождения. Они свидетельствуют лишь о заключительных стадиях процесса отложения минералов, начавшегося при высоких температурах.

Образование гидротермальных растворов продолжается, очевидно, весьма длительное время — в течение всего периода жизни магматического очага. На основании анализа фактических данных о соотношениях различных месторождений, составляющих один рудный узел, С. С. Смирнов пришел к выводу о прерывистом движении рудоносных растворов в связи с неоднократным возобновлением процессов трещинообразования. Об этом говорят нередко наблюдающиеся признаки наложения более поздних стадий минерализации на более ранние.

Формы минеральных тел зависят от конфигурации выполняемых пустот и отчасти от состава горных пород, в которых происходит циркуляция растворов. В случае заполнения трещин образуются прерывающиеся жилы (рис. 56), корни которых иногда залегают в верхних частях магматических массивов. При отложении минералов в мельчайших порах и пустотах образуются вкрапленники. Если раст­воры на своем пути встречают химически легко реагирующие породы (например, известняки), то возникают часто неправильной формы метасоматические залежи. Если растворы внезапно попадают в большие раскрывшиеся полости, то вследствие резкого уменьшения давления должно происходить массовое испарение растворителя (воды), а в связи с этим, по крайней мере в первое время, — резкое пересыщение растворов и выпадение колломорфных масс, сложенных сферолитовыми агрегатами. Широко распространены также пустоты с друзами различных кристаллов.

Рис. 56. Блокдиаграмма, отображающая морфологию «лестничных»
золотоносных кварцевых жил, заполняющих систему ступенчатых сбросов

Данные по растворимости рудных компонентов в солевых водных растворах показывают, что объемы гидротерм, которые способны генерировать даже очень крупные интрузии (типа батолитов), недостаточны для выноса из магматического очага тех количеств металлов, которые запасены в гидротермальных залежах. Это привело к пересмотру взглядов на единство источников для части металлов и гидротермальных растворов. В настоящее время признается, что в образовании гидротермальных жил также могут принимать участие воды глубокой циркуляции метеорного происхождения. Многократная циркуляция в неоднородном тепловом поле магматического очага значительных масс таких вод, обогащенных летучими компонентами, исходящими из интрузии, ведет к выщелачиванию из огромных объемов надинтрузивных вмещающих пород некоторой доли кларковых содержаний таких металлов, как Au, Ag, Cu и Co, что является достаточным для последующего отложения значительных масс рудных минералов. Смешанная природа гидротермальных растворов подтверждается и данными об изотопном составе газово-жидких включений в жильном кварце.

Минеральный состав гидротермальных месторождений крайне разнообразен. Жилы в подавляющем большинстве случаев представлены массами кварца, которые заключают в себе скопления разнообразных минералов, чаще всего сернистых соединений металлов. Нужно сказать, что именно из гидротермальных месторождений добывается главная масса руд редких (W, Мо, Sn, Bi, Sb, As, Hg, отчасти Ni, Co), цветных (Cu, Pb, Zn), благородных (Аu и Ag), а также радиоактивных металлов (U, Ra, Th).

Экзогенные процессы минералообразования

Процессы образования минералов, совершающиеся на поверхности Земли за счет солнечной энергии, гораздо более доступны нашему наблюдению, чем эндогенные процессы.

Как мы знаем, на суше под влиянием воздействия атмосферных агентов (кислорода воздуха, углекислоты, воды) и жизнедеятельности микроорганизмов происходит мощный химический процесс, носящий общее название процесса выветривания. Он приводит к физическому и химическому разложению всего того, что было создано эндогенными процессами, и одновременно к образованию новых продуктов, устойчивых в со­з­дающихся на поверхности Земли условиях.

Часть этих продуктов текучими поверхностными водами переносится в растворенном или взвешенном состоянии и по пути следования отлагается в местах замедленного движения вод в речных долинах или в озерных и морских бассейнах. Здесь также протекают своеобразные процессы минералообразования, приводящие к отложению осадков в виде пластов на дне водоемов. Этот процесс носит название осадочного процесса.

Процессы выветривания выражаются прежде всего в механическом разрушении пород и руд вследствие колебаний температуры, что ведет к дезинтеграции составляющих породы минералов, обладающих различными коэффициентами расширения, а также под действием замерза­ющей в трещинках и порах воды и других факторов. Но гораздо важнее химическое разложение выветривающихся минералов под влиянием дождевой и поверхностной воды, содержащей в растворенном состоянии кислород, углекислоту и другие газы, вследствие чего она обладает довольно сильной окисляющей и растворяющей способностью. Эта вода, просачиваясь и спускаясь до уровня грунтовых вод (рис. 57), постепенно теряет свой кислород в процессе происходящих реакций окисления, гидратации и карбонатизации.

Рис. 57. Схема поперечного разреза сульфидного месторождения,
обнаженного на дневной поверхности: 1 — первичные медносульфидные руды;
2 — железная шляпа; 3 — зона вторичного обогащения медью (черное)

Выщелачивание образующихся растворимых соединений приводит к образованию пор, каверн, иногда больших полостей (карстов). Стенки этих пустот часто бывают покрыты натечными образованиями или щетками кристаллов каких-либо экзогенных минералов или, наконец, могут быть выполнены землистым охристым материалом. В тех местах, где происходит массовое выщелачивание более или менее легкорастворимых пород, наблюдается проседание с поверхности почвы, а иногда образование воронок провала и даже больших пещер (в гипсовых и известняковых толщах).

Развивающийся на самой поверхности растительный покров, а вместе с ним и различные органические соединения, переходящие в растворы, значительно усиливают процессы химического разложения пород и руд.

Не разрушающиеся химически минералы (такие как кварц, золото, платина и др.), а также труднорастворимые новообразования накапливаются в остаточных продуктах на поверхности Земли, наблюдающихся в виде глиноподобных масс различных светлых и темных оттенков, чаще бурых, окрашенных гидроокислами железа.

Накапливающиеся таким путем на поверхности или вблизи нее нерастворимые продукты химического выветривания образуют так называемые остаточные месторождения, представляющие собой скопления преимущественно гидроокислов и гидросиликатов. Таковы, например, многие месторождения глин, каолинов, бокситов, железных, никелевых и других руд, образующиеся при интенсивном разрушении соответствующих по составу горных пород и занимающие иногда весьма значительные площади.

В тех случаях когда химическому выветриванию подвергаются какие-либо месторождения полезных ископаемых, возникающие остаточные образования носят название шляп (железных, марганцевых, гипсовых и др.). За счет выщелачивания ряда компонентов содержание остающихся полезных ископаемых в этих шляпах обычно значительно выше, чем в неразложенных первичных рудах, т. е. залегающих ниже уровня грунтовых вод. Важно отметить, что некоторые выщелачиваемые металлы, особенно медь, а также серебро, цинк и др., переносимые просачивающимися водами в виде растворов к низам зоны окисления, т. е. к уровню грунтовых вод, вступают в реакции с первичными рудами или с химически активными боковыми породами (известняками). В медносульфидных месторождениях в этих случаях образуется зона вторичного сульфидного обогащения со значительно повышенным содержанием меди в рудах (см. рис. 57).

В процессах химического выветривания большую роль играют климатические факторы (средняя годовая температура и количество осадков). При малой влажности и высоких средних годовых температурах процессы окисления и концентрации химических соединений происходят энергичнее. Большое значение имеет также рельеф местности. В гористых районах вследствие большой эрозионной деятельности не успевает происходить накопление продуктов химического разрушения. Иную картину мы наблюдаем в районах с пониженным рельефом.

Формы месторождений, образующихся в процессе выветривания, обычно бывают представлены не совсем правильными гнездообразными или пластообразными залежами, более или менее параллельными дневной поверхности. Вдоль крупных трещин, зон дробления и контактов разнородных по физическим и химическим свойствам пород, т. е. там, где глубже проникают поверхностные агенты выветривания, могут образоваться крутопадающие, выклинивающиеся с глубиной залежи рудных образований поверхностного происхождения.

Осадочные процессы происходят в водных средах: реках, озерах и морях. В морских бассейнах эти процессы во все геологические эпохи приводили к образованию огромной мощности толщ осадочных горных пород. Среди этих образований различают механические и химические осадки.

Механические осадки образуются при размыве продуктов выветривания и переотложении водными потоками химически стойких минералов и обломков пород в виде галечника, гравия, песков и песчаных глин в речных долинах и водных бассейнах. Если размыву подвергаются продукты выветривания месторождений или пород, содержащих химически стойкие ценные минералы, то они в результате повторных перемывов и перераспределения материала по удельному весу в речных долинах образуют россыпи (рис. 58), имеющие часто промышленное значение. Таковы, например, россыпные месторождения золота, платины, алмазов и др.

Рис. 58. Обогащенные ильменитом, рутилом и цирконом
темные слойки в песках раннемеловой прибрежно-морской
титаноциркониевой россыпи. Нечерноземье, Россия

В процессе накопления механических осадков по существу не происходит образования каких-либо новых минералов. Лишь в древних россыпях иногда устанавливаются некоторые позднейшие химические изменения в обломочном материале.

Химические осадки возникают главным образом в озерах и мор­ских бассейнах. Выпадение осадков может происходить различными способами: либо путем кристаллизации насыщенных солями растворов, либо путем осаждения свертывающихся в виде гелей коллоидных образований, либо, наконец, путем накопления продуктов жизнедеятельности органического мира и самих органических остатков.

1. Образование кристаллических осадков, называемых эвапоритами, наблюдается во многих усыхающих озерах, в которых в условиях сухого жаркого климата поверхностное испарение превалирует над притоком пресной воды.

Кристаллизация солей наступает при некотором пересыщении водных растворов. Последовательность выделения минералов при прогрессирующем испарении растворителя (Н2О) определяется двумя главными факторами равновесия системы: составом растворов, вернее, соотношением концентраций компонентов, входящих в систему, и температурой растворов, при которой происходит кристаллизация. Условия равновесия сернокислых и хлористых солей Са, Mg, К и Na, встреча­ющихся в морской воде, детально изучены при различных концентрациях и температурах Вант-Гоффом, Н. С. Курнаковым и многими другими.

2. Образование коллоидальных осадков в озерных и морских бассейнах много сложнее, и не все стороны этого явления изучены в достаточной степени. Установлено, что некоторые образующиеся при выветривании соединения переносятся текучими водами не только в виде истинных растворов, но также в виде коллоидных растворов — золей, устойчивых в пресных водах. Эти растворы, попадая с поверхностными водами в морские бассейны, подвергаются коагуляции под влиянием электролитов, содержащихся в больших количествах в морских водах в виде ионов растворенных солей.

Так ведут себя коллоидальные растворы окислов железа, марганца, кремния и др.

Образующиеся при коагуляции коллоидных растворов микродисперс­ные минеральные осадки вместе с приносимыми речными водами глинистыми частицами, мелким обломочным материалом и остатками морских организмов отлагаются на дне прибрежных зон бассейнов в виде прослоев или более мощных правильных по форме пластов. С течением времени в этих осадках происходят некоторые преобразования (диагенезис) и превращение их в плотные массы.

На примере марганцевых осадочных месторождений выяснено закономерное изменение парагенетических ассоциаций минералов в осадках в зависимости от физико-химических условий формирования осадков на дне бассейнов. В прибрежных мелководных участках распространены наиболее богатые кислородом соединения четырехвалентного марганца, которые по мере удаления от береговой линии постепенно сменяются карбонатными соединениями двухвалентного марганца в сопровождении редких сульфидов железа. В мелководных участках осадконакопление, очевидно, происходило в условиях доступа кислорода, растворенного в морской воде, до некоторой глубины, тогда как в более глубоководных участках имели место недостаток кислорода, разложение органических остатков с образованием углекислоты и отчасти сероводорода, за счет которых, очевидно, и образовались карбонаты и сопровождающие их сернистые соединения. В результате возникли так называемые фации различных по составу руд (окисных и карбонатных). По-видимому, аналогичные же соотношения различных по составу осадков существуют и в месторождениях железа, для которых давно уже известны фации окисных, силикатных и карбонатных руд.

3. К органогенным, или биогенным, осадкам, образующимся в результате сложных процессов жизнедеятельности организмов, относятся известняки, состоящие из скелетных образований морских животных, диатомиты, сложенные преимущественно кремнистыми скелетами диатомей, каустобиолиты (от греч. каустос — горючий), возникшие главным образом за счет растительных и отчасти животных организмов (например, ископаемые угли, горючие сланцы, нефти, горючие газы, твердые битумы и пр.).

Органогенные осадки могут возникать путем накопления скелетов отмирающих животных (ракушняки) или тканей высших или низших растений (торф, сапропель). Они могут также являться результатом самой жизнедеятельности организмов, например анаэробных бактерий, разлагающих органические остатки или сульфаты, в процессе чего в конце концов образуются скопления серы. Наконец, за счет продуктов деятельности бактерий могут возникать желвакоподобные образования, как это в лабораторных условиях было доказано для ферробактерий.

При последующем перерождении одни из этих осадков превращаются в неорганические продукты (например, известняки, фосфориты), другие же остаются органическими соединениями (каменные угли и др.).

Региональный метаморфизм и связанные с ним процессы минералообразования

Наиболее сильные изменения как эндогенных, так и экзогенных образований наступают при так называемом региональном метаморфизме, когда вследствие тектонических перемещений целые области верхних участков земной коры могут оказаться в глубинных условиях, т. е. в условиях сильно повышенных температур и давлений или в условиях мощного проявления горообразующих процессов.

В этих условиях весьма существенно меняется минеральный состав горных пород и руд, а также их свойства и внешний облик. Химический состав при метаморфизме остается неизменным в отличие от метасоматоза, исключение составляют лишь два компонента — вода и углекислота. Образовавшиеся в экзогенных условиях богатые водой соединения превращаются в безводные или бедные водой (например, опал переходит в кварц, лимонит — в гематит или магнетит и т. д.). Одновременно происходит перекристаллизация вещества (например, органогенный известняк превращается в мрамор с уничтожением прежних структурных особенностей). Во многих породах, в том числе в изверженных, происходит полная перегруппировка компонентов с образованием новых минералов. Некоторые минералы, такие как гипс, самородная сера, каменная соль и др., совершенно не встречаются в метаморфических толщах. Химические реакции под влиянием высокого давления и температуры стремятся идти в сторону образования минералов с уменьшенным объемом и повышенным удельным весом. Парагенезис минералов зависит не только от состава метаморфизующихся пород, но и в значительной мере также от глубины, на которой происходит метаморфизм, т. е. от термодинамических условий.

Сами породы под влиянием сильных динамических воздействий превращаются в сланцы, способные раскалываться на пластинки и плитки (глинистые сланцы, аспидные сланцы, слюдяные сланцы, гнейсы и др.). Если метаморфизму подвергаются тонкослоистые осадочные породы, причем направление давления совпадает с направлением слоистости или близко к нему, то происходит сминание прослоек с образованием многочисленных мелких складок, подобно тому, как это изображено на рис. 59.

Рис. 59. Железистый кварцит плойчатой текстуры
(слойки, сложенные кварцем, гематитом и магнетитом,
смяты в мелкие складки)

В перегруппировках минерального вещества бесспорную роль играют такие компоненты, как Н2О, СО2 и другие минерализаторы, с помощью которых совершаются не только перекристаллизация масс, но и явления метасоматоза и даже переотложение минерального вещества. Источником Н2О и СО2 в данном случае являются либо магматические породы, либо те же породы, которые подвергаются метаморфизму. Из некоторых пород, особенно из осадочных, в процессе перекристаллизации их массы в агрегаты безводных минералов должны освобождаться весьма сущест­венные количества воды и отчасти углекислоты. В условиях повышения температур и давлений эта метаморфическая вода должна приобретать все свойства типичных гидротерм, а затем — и флюидов, генетически связанных с интрузивной магматической деятельностью, т. е. повышенную способность к растворению, переносу и отложению минералов вдоль трещин или путем метасоматоза.

Среди месторождений полезных ископаемых, встречающихся в метаморфизованных толщах, выделяются следующие несколько различные по генетическим признакам типы: а) метаморфизованные месторождения, т. е. месторождения, существовавшие до момента метаморфизма (например, осадочные месторождения железа и марганца); б) метаморфические месторождения, возникшие лишь в процессе метаморфизма.

Примером генезиса месторождений последнего типа может служить образование в метаморфических толщах графита за счет органических остатков.

Известны случаи происхождения скрытокристаллического графита с отпечатками растений за счет пластов каменного угля (в метаморфических толщах восточного склона Урала). В данном случае графит как новообразование уже не представляет собой горючее ископаемое вследствие коренного изменения первоначальных свойств и потери летучих веществ.

К этому же типу месторождений относятся чрезвычайно интересные в минералогическом отношении так называемые жилы альпийского типа (название дано по месту их первоначального изучения). Эти жилы давно обратили на себя внимание минералогов тем, что в них встречаются замечательные по красоте друзы кристаллов различных минералов. Они приурочены к полым трещинам разрыва, возникшим в метаморфических толщах обычно вкрест сланцеватости пород (рис. 60). Характернейшей особенностью состава этих жил является то, что в них выкристаллизовываются те же самые минералы, которые возникают в процессе метаморфизма в самих окружающих породах, и примерно в тех же количественных соотношениях. Лишь более редкие в породах — акцессорные минералы, содержащие Ti, P, Cl, B и др., в трещинах встречаются в несколько больших количествах, чем в боковых породах. Соответствие минерального состава жил альпийского типа составу вмещающих пород позволяет считать, что минеральные компоненты были перенесены в полости непосредственно из метаморфизуемых толщ при участии флюидов или гидротерм, не связанных, по-видимому, с какими-либо магматическими очагами. Пестрота минерального состава альпийских жил приводит к тому, что их выполнение трудно отнести к определенному узкому интервалу температур. Механизм перераспределения компонентов из боковых пород в открытые полости трещин, как предполагается, связан с более высокой растворимостью в поровых растворах породообразующих минералов, а присутствующих в виде мелких зерен акцессорных — в особенности, по сравнению с их растворимостью в растворах полостей.

Рис. 60. Схема строения жил альпийского типа

Тонкие трещины в метаморфических породах нацело выполняются минеральным веществом. Таковы, например, прожилки белого кальцита в серых известняках, молочно-белого кварца в красных яшмах и т. д. При этом размеры кристаллических зерен этих жилок всегда больше, чем в окружающей породе.


1 Следует помнить, что если переохлаждение жидкости как в лабораторных, так и в природных условиях представляет собой обычное явление, то, наоборот, перегрев кристаллического вещества (выше точки плавления) получить очень трудно. То же относится к пересыщению раствора и сохранению твердой растворимой фазы в разбавленных растворах.

2 Термин «генерация», вообще говоря, относится не только к отдельным минералам, но и к минеральным комплексам, в частности к горным породам и рудам. Например, жилы диабазов или кварцевых порфиров нередко имеют по несколько поколений, как об этом можно судить по пересечениям жил одной и той же породы. Другой пример: в некоторых молибденовых месторождениях среди жил грубозернистого кварца с крупнокристаллическим молибденитом (MoS2) иногда наблюдаются более поздние генерации молибденовых руд (в виде прожилков и цемента между обломками), представленных тонкозернистым кварцем и обильным скрыточешуйчатым молибденитом.

3 Пара (греч.) — подле, возле; генезис (греч.) — образование, происхождение.

4 С этим понятием о пегматите нельзя смешивать чисто структурный термин «пегматит», обозначающий смесь кварца и полевого шпата, закономерно проросших друг друга и притом в определенных количественных соотношениях («письменный гранит», «еврейский камень»). Подобные образования распространены главным образом в гранитных пегматитах.