Общая геология

Глава 4. Атмосфера и гидросфера

Атмосфера представляет собой газовую оболочку Земли, а гидро­сфера — это прерывистая водная оболочка, состоящая из океанов, морей, озер, рек, болот, подземных вод, ледников и снежного покрова, расположенных на поверхности Земли. В нижней части атмосферы и в гидросфере располагается биосфера. Атмосфера и гидросфера ответственны за многие геологические экзогенные процессы.

Состав атмосферы. Воздух вблизи земной поверхности состоит (без водяного пара) из 78 % по объему (76 % по массе) азота и 21 % по объему (23 % по массе) кислорода. 1 % почти полностью представлен аргоном. Все другие составляющие сухого воздуха, а это гелий (Не), неон (Ne), метан (СН4), водород (Н2), оксид азота (NO2), диоксид серы (SO2), радон (Rn), аммиак (NH3), озон (О3), содержатся в ничтожных количествах. Воздух может содержать также частицы, попадающие
в него при извержениях вулканов, лесных пожарах и за счет техногенной деятельности человека. Особенно опасны аэрозоли от окисления газов, содержащих серу, хлорфторуглероды. Хорошо известны кислотные дожди, возникающие за счет промышленной деятельности человека. Наибольшая концентрация твердых частиц и аэрозолей наблюдается в приземных слоях атмосферы и на высотах 14–25 км в так называемом слое Юнга. За последние 10 лет прозрачность атмосферы уменьшилась на 20 %.

Для человека чрезвычайно важно содержание кислорода в воздухе, нормальное среднее количество которого в приземной атмосфере составляет 20,8 %. 150 лет назад эта величина была равной 26 %, а в доисторическую эпоху — около 36 %. Минимальный предел содержания кислорода для человека равен 17 %. На космических станциях кислород поддерживается на уровне 33 %. В то же время в метро, в квартирах, в автобусах содержание кислорода составляет 20–20,4 %, тогда как в горах, в лесу, на море его концентрация возрастает до 21,6–21,8 %. Понятно поэтому, почему так легко дышится за городом, на природе. А в урбанизированном пространстве человек подвержен гипоксии, т. е. кислородному голоданию.

Атмосфера состоит из целого ряда сфер, выделяющихся на основании изменения температуры (рис. 4.1). Тропосфера — это нижний слой атмосферы до 10 км высотой с постоянным падением температуры примерно на 0,6 °С на 100 м высоты. На верхней границе тропосферы выделяется слой постоянных температур — тропопауза (1–2 км). Где-то на верхней границе тропопаузы и выше, на уровне около 20 км, располагается озоновый слой или, как его называют, «щит», состоящий из О3, который предохраняет все живое от губительного коротковолнового (длина волны менее 100 км) ультрафиолетового солнечного излучения.

Рис. 4.1. Строение атмосферы. На высоте 17–26 км
располагается озоновый слой (О3), задерживающий ультрафиолетовое излучение

Выше, до высот 50–55 км, располагается стратосфера, в которой наблюдается рост температур до верхней ее границы — стратопаузы, где температура почти такая же, как у поверхности Земли, что связано с поглощением солнечного излучения озоном. Водяной пар содержится в стратосфере в ничтожных количествах, но на высоте около 25 км присутствуют переохлажденные капельки воды, образующие тонкие перламутровые облака.

Над стратопаузой до высоты 80 км находится мезосфера, в которой температура снова понижается до –100 °С, и затем слой с давлением воздуха в 100 раз меньшим, чем у поверхности Земли, — мезопауза. В этих трех слоях заключено 99,5 % всей массы атмосферы, а на высоте 80 км давление уже в 10 тыс. раз меньше приземного.

Выше мезопаузы располагается термосфера, в которой температура снова резко повышается до 1200–1500 °С на высоте 250 км, а верхняя граница термосферы находится на уровне 800–1000 км, выше которого выделяется экзосфера, или сфера ускользания газов. Космические исследования показали, что еще до высот 20 тыс. км простирается так называемая земная корона, в которой на 1 см3 приходится около 1000 частиц газа.

На высоте около 100 км начинается разделение газов и более легкие стремятся вверх, а более тяжелые — вниз, например доля аргона будет уже не 1 %, а менее 0,001 %. Здесь же происходит разделение молекул на составляющие их атомы.

Климат Земли определяется атмосферной циркуляцией, теплооборотом и влагооборотом, а также астрономическими факторами — наклоном оси вращения Земли к плоскости эклиптики, светимостью Солнца и т. д. Климат, присущий отдельно взятому региону, определяется рядом факторов: географической широтой, наличием морей и суши, рельефом, растительностью, ледовым покровом и др. От климата зависит характер выветривания и другие экзогенные геологические процессы.

Регулярные наблюдения за атмосферной циркуляцией до высоты 60 км производятся с искусственных спутников Земли. Многие системы ветров обусловлены термической конвекцией, т. е. перепадом температур. Однако эти ветры имеют небольшие горизонтальные размеры. Наиболее мощные конвективные ячейки в атмосфере расположены в Cеверном и Южном полушариях от экватора до 20–30° широты и называются циркуляцией Хэдли, вызывающей знаменитые ветры-пассаты. Севернее и южнее 30° широты известны ячейки циркуляции Ферелл, в которых воздух движется в противоположном направлении по сравнению с ячейками Хэдли. То есть в поясе широт 20–30° происходит опускание сухого верхнего слоя воздуха к земной поверхности, где развиты пустыни.

Гигантские вихри в атмосфере — циклоны вызваны потерей устойчивости атмосферного потока. Переход потенциальной и тепловой энергии атмосферы в кинетическую и обусловливает разгон воздушной массы, которая под действием силы Кориолиса отклоняет движение воздуха вправо в Северном полушарии и влево — в Южном. Циклоны и антициклоны в средних и высоких широтах перемещаются с запада на восток, что и определяет погоду.

Вся энергия атмосферных процессов зависит от солнечной радиации, или излучения. Каждая единица земной поверхности получает от Солнца за 1 год тепла в 30 тыс. раз больше, чем поступает из земных недр. Солнечная радиация на 99 % представляет собой коротковолновую радиацию с длиной волн от 0,1 до 4 мкм и включает в себя видимый свет, ультрафиолетовую и инфракрасную радиацию. Нагреваемая земная поверхность излучает уже длинноволновую радиацию с длиной волн от 4 до 100 мкм. Атмосфера рассеивает солнечную радиацию, чему способствует облачный покров (рис. 4.2).

Рис. 4.2. Солнечная радиация, поступающая на Землю.
1 — 47 % поглощается горными породами, почвой и водой на земной поверхности;
2 — 19 % поглощается атмосферой и облаками; 3 — 23 % отражается облаками;
4 — 8 % рассеивается атмосферой; 5 — 3 % отражается грунтами

Гидросфера — это прерывистая оболочка Земли от распространения воды в атмосфере до нижней границы подземных вод. Водяной пар содержится в атмосфере от 0,2 % в высоких широтах до 4 % в тропическом экваториальном поясе и постоянно поступает в атмосферу при испарении воды с поверхности водоемов, почвы, а также от растительности (транспирация). Вода Мирового океана покрывает 71 % поверхности Земли (361 млн км2), если сюда присоединить все остальные водоемы, то — 383 млн км2, с учетом зимнего снежного покрова — 443 млн км2, т. е. 83 % площади поверхности земного шара (рис. 4.3).

Рис. 4.3. Распределение воды на Земле

Роль океанов заключается и в том, что их вода, будучи теплее, чем атмосфера, в среднем на 3 °С, непрерывно обогревает последнюю, имея запас тепла в 21 раз больше, чем в атмосфере. Между атмосферой и гидросферой все время осуществляется сбалансированный обмен теплом.

На Земле происходит постоянный и хорошо известный круговорот воды, включающий в себя океаническое и материковое звенья, которые связаны друг с другом, т. к. водяной пар переносится с океана на сушу и наоборот, а также поверхностным и подземным стоком с суши в океан. Водяной пар, переносимый с океана на сушу, составляет 47 км3, в то время как с поверхности Мирового океана ежегодно испаряется 505 тыс. км3 воды, а возвращается атмосферными осадками 458 тыс. км3. На поверхность суши ежегодно выпадает 119 тыс. км3 осадков. Поверхностный сток суши составляет 44,7 тыс. км3/год, а подземный — 2,2 тыс. км3/год, из них водный сток рек — 41,7 тыс. км3/год, а ледниковый сток — 3 тыс. км3/год. Естественно, что ледниковый сток Антарктиды больше всего. Атмосферные осадки в каждом конкретном районе суши складываются из влаги, испарившейся в этом районе, и влаги, привнесенной извне.